Учебная работа № 6717. «Контрольная Высшая математика. Контрольная работа №1 Вариант 3+Контрольная работа № 2

Учебная работа № 6717. «Контрольная Высшая математика. Контрольная работа №1 Вариант 3+Контрольная работа № 2

Количество страниц учебной работы: 8
Содержание:
«Контрольная работа №1
Вариант №3
№1.
Методом обратной матрицы решить систему линейных уравнений:

№2.
Найти предел.
№3.
Найти производную функции
№4.
Внутреннюю поверхность резервуара емкостью 4 м3 с квадратным основанием, открытого сверху, нужно покрыть оловом. Какими должны быть размеры резервуара, чтобы расход олова оказался минимальным? (Толщиной стенок пренебречь).
№5.
Составить уравнения к графику функции , образующих с осью ОХ угол 135. Сделать чертеж.
№6.
Исследовать функцию и построить схематично ее график:
Контрольная работа №2
№1.
Найти неопределенный интеграл:
№2.
Вычислить определенный интеграл:

№3.
Вычислить определенный интеграл:

№4.
Решить дифференциальное уравнение

№5.

Вычислить площадь фигуры, ограниченной линиями

№6.
Экспериментальные данные о значениях переменных х и у приведены в таблице:
xi 0 1 2 3 4 5
yi 1,3 1,8 2,2 2,3 2,6 3
В результате выравнивания получена функция
Используя метод наименьших квадратов, аппроксимировать эти данные линейной зависимостью (найти параметры ). Выяснить какая из двух линий (в смысле метода наименьших квадратов) лучше выравнивает экспериментальные данные. Сделать чертеж.

№7.

Используя разложение в степенной ряд функции вычислить с точностью 0,001:
»

Стоимость данной учебной работы: 585 руб.Учебная работа № 6717.  "Контрольная Высшая математика. Контрольная работа №1 Вариант 3+Контрольная работа № 2
Форма заказа готовой работы

Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

Укажите № работы и вариант


Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


Введите символы с изображения:

captcha

Выдержка из похожей работы

Найдём ранг основной
матрицы системы с помощью элементарных
преобразований:

~
~

Таким образом,
= 2
Так как ранг системы
меньше числа неизвестных, то система
имеет ненулевые решения, Размерность
пространства решений этой системы: n
– r
= 4 – 2 = 2
Преобразованная
система имеет вид:

<=>
<=>

<=>

Эти формулы дают
общее решение, В векторном виде его
можно записать следующим образом:

=
=
=
*
+

где
,
− произвольные числа

Вектор−столбцы:

=
и
=
образуют базис
пространства решений данной системы,

Задание 74,
Даны два линейных
преобразования, Средствами матричного
исчисления найти преобразование,
выражающее x1′′,
x2′′,
x3′′
через x1,
x2,
x3

Решение

Первое линейное
преобразование:

= A
*
имеет матрицу А =

Второе:

= B
*
имеет матрицу В =
(*)
Тогда если в (*)
вместо В и
поставить соответствующие матрицы,
получим:

C
= B
* A
, то есть

C
=
*
=

Поэтому искомое
линейное преобразование имеет вид:

=
*

Задание 84,
Найти собственные
значения и собственные векторы линейного
преобразования, заданного в некотором
базисе матрицей,

Составляем
характеристическое уравнение матрицы:

=
= 0

(5−λ)
*
+ 7 *
+ 0 *
= 0

(5−λ)
(1−λ)
(−3−λ)
+ 7 (−3) (−3−λ)
= 0 (**)
(5−6λ+)
(−3−λ)
+ 63 + 21λ
= 0
−15 +18λ
− 3
− 5λ
+ 6

+ 63 + 21λ
= 0
48 + 34λ
+ 3

= 0 <=> (**) (λ
– 8) (λ
+ 2) (λ
+ 3) = 0
то есть
= 8 ,
= −3 ,
= −2

При
= 8 система имеет вид:

=>

Выразим
через :

4 * (−7)
+ 6
= 11
−22
= 11
=>
= −0,5

Выразим
через :

12
+ 6*()
= 11

84
− 18
= 77
66
= 77
=>
= 1

Таким образом,
числу
= 8 соответствует собственный вектор:

=
=
=

где
− произвольное действительное число

Аналогично для

= −3

<=>
=
= 0

Таким образом,
числу
= −3 соответствует собственный вектор

=
=
=

Наконец для
= −2 решаем систему:

=>

то есть вектор

=
=
=

Итак, матрица А
имеет три собственных значения:
= 8 ,
= −3 ,
= −2, Соответствующие им собственные
векторы (с точностью до постоянного
множителя) равны:

=

=

=

Задача 94,
Привести к
каноническому виду уравнение линии
второго порядка, используя теорию
квадратичных форм,

Левая часть
уравнения
представляет собой квадратичную форму
с матрицей:
А =
Решаем
характеристическое уравнение:

= 0 , то есть
= 0
<=> (5−λ)
(3−λ)
= 8

− 8λ
+ 7 = 0

= 1 ,
= 7

Найдём собственные
векторы из системы уравнений

при
= 1 ,
= 7

Если
= 1 , то:

=>
=

Значит собственный
вектор
=
для
= 1

Если
= 7 , то:

=>
=

значит собственный
вектор
=
для
= 7

Нормируем собственные
векторы, по правилу:

=
, получаем:

=

=

Составляем матрицу
перехода от старого базиса к новому:

T
=

Выполняя
преобразования:

= T

=
*
=
=>
x
=
+
, y
= +

Подставим полученные
x
и y
в исходное уравнение и полученное
уравнение упростим:

5
+

+ 3
= 14

+
+ 22
+
= 14

+ 10
+ 10
− 8
− 4
+ 8
+ 6
− 6
+ 3
= 42

+ 21
= 42 =>

+
= 1 – каноническое уравнение эллипса