Учебная работа № /8684. «Контрольная Высшая математика (7 задач)

Учебная работа № /8684. «Контрольная Высшая математика (7 задач)

Количество страниц учебной работы: 15
Содержание:
«Содержание
Задача №1 2
Задача №2 2
Задача №3 3
Задача №4 5
Задача №5 6
Задача №6 7
Задача №7 9
Список литературы 15

Задача №1
Найти общее решение (общий интеграл) уравнения: x(y’’+1)+y’=0
Задача №2
Найти общее решение дифференциального уравнения: а) y’’-2y’=0;
б) 2y’’-3y’-2y=0.
Задача №3
Найти общее решение неоднородного линейного дифференциального уравнения, используя метод неопределенных коэффициентов.
y’’+6y’+34y=5xe-3x
Задача №4
Исследовать сходимость ряда а) , б) , в) .
Задача №5
Выяснить, какой из данных рядов сходится абсолютно, какой сходится условно, какой расходится:
а) ; б) ; в)
Задача №6
Найти область сходимости степенного ряда:
а) ; б) .
Задача №7
Дифференциальное исчисление функций нескольких переменных.
1) Найти точки экстремума функции двух переменных
z=xy(1-x-y)=xy-x2y-xy2.
»

Стоимость данной учебной работы: 585 руб.Учебная работа № /8684.  "Контрольная Высшая математика (7 задач)

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


    Выдержка из похожей работы

    ru/
    ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ
    ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
    ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
    «СИБИРСКАЯ АКАДЕМИЯ ГОСУДАРСТВЕННОЙ СЛУЖБЫ»
    Кафедра математики и информатики

    Письменное контрольное задание
    для студентов и слушателей дистанционного обучения
    Решение задач по курсу высшей математики
    Новосибирск 2011
    1, Решить задачу линейного программирования
    линейное программирование среднее отклонение выборка
    №5,
    х1 + 3х2 max
    Решение, Изобразим графики линий, задавая точки
    а),+=2 и
    б), +2х2 =7 и
    в), 4х1 — 3х2 = 6 и
    F: х1+3х2 = 0 и
    ОАВСД- многоугольник множества решений данной системы, Среди точек многоугольника ОАВСД выбираем такую, в которой целевая функция достигает максимального значения, Пересечем этот многоугольник прямой (задающей целевую функцию ) и перемещаем прямую параллельно самой себе, пока многоугольник условий не окажется ниже этой прямой, Предельное положение этой прямой — точка В — точка пересечения прямых а) и б), Получили В (1,3), значит
    F= 1 + 3*3 = 10
    Ответ, Максимальное значение функции равно 10
    Задание 2, Составить и решить задачу линейного программирования
    № 5, Караван Марко Поло использует для перевозки сухого инжира из Багдада в Мекку дромадеров (одногорбых верблюдов) и Обычных (двугорбых) верблюдов, Верблюд может нести 1000 фунтов груза, а дромадер — 500 фунтов, За время пути верблюд потребляет 3 тюка сена и 100 галлонов воды, а дромадер 4 тюка сена и 80 галлонов воды, Вдоль пути Марко Поло имеются пункты снабжения, расположенные в оазисах, Общая емкость запасов на этих участках 1600 галлонов воды и 60 тюков сена, Верблюды и дромадеры нанимаются у пастуха около Багдада, Стоимость аренды верблюда 11 монет, а дромадера — 5 монет, Караван должен доставить из Багдада в Мекку не менее 10000 фунтов инжира,
    Составить задачу линейного программирования о минимальных издержках на аренду верблюдов и дромадеров, Сколько потребуется верблюдов и дромадеров, чтобы арендная плата пастуху была минимальной?
    Решение
    Пусть х — число дромадеров, у — число верблюдов,
    Согласно условию задачи получим систему неравенств

    Целевая функция F: 5х + 11 у max
    Изобразим графики линий, задавая точки
    1, 500 х + 1000у=10000,
    Х + 2у = 20 (0,10) и (10,5)
    2, 4 х + 3 У = 60 (0,20) и (15,0)
    3, 80 х + 100 у = 1600
    4 х + 5 у = 80 (0,16) и (20,0)
    Целевая функция F: 5х + 11у = 0 (0,0) и (11,-5)

    АВС- многоугольник множества решений данной системы, Среди точек многоугольника АВС выбираем такую, в которой целевая функция достигает минимального значения, Пересечем этот многоугольник прямой (задающей целевую функцию ) и перемещаем прямую параллельно самой себе, пока многоугольник условий не окажется выше этой прямой,
    Минимального значения целевая функция достигнет в точке С- точке пересечения прямых 1, И 2: 2х + у =20 и 3х + 4у +80″