Учебная работа № /7984. «Контрольная Эконометрика, вариант 6 59

Учебная работа № /7984. «Контрольная Эконометрика, вариант 6 59

Количество страниц учебной работы: 37
Содержание:
«Контрольная работа №1.
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (X, млн.руб.)
Требуется:
1) Построить поле корреляции и сформулировать гипотезу о форме связи.
2) Найти параметры уравнения линейной регрессии и дать ему экономическую интерпретацию.
3) Оценить тесноту связи с помощью показателей корреляции и детерминации.
4) Проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05) и с помощью средней относительной ошибки аппроксимации. Сделать вывод о качестве модели.
5) Проверить выполнимость предпосылок МНК.
6) Рассчитать параметры уравнений степенной и гиперболической регрессий. Дать интерпретацию уравнению степенной регрессии
7) Рассчитать индексы корреляции и детерминации.
8) Оценить значимость построенных моделей регрессий с помощью F-критерия Фишера и средней относительной ошибки аппроксимации. Сделать выводы.
9) С помощью сравнения основных характеристик выбрать лучшее уравнение регрессии и сделать вывод.
10) Осуществите прогнозирование среднего показателя Y при уровне значимости α=0,05, если прогнозное значение фактора Х составит 80% от его максимального значения. Определите доверительный интервал прогноза.
Вариант 6.
x 24 55 60 13 30 81 68 41 82 41
y 36 24 17 7 15 49 45 19 52 40

Контрольная работа №2.
Задача 1.
Вариант 6:
По данным, представленным в таблице, изучается зависимость индекса человеческого развития y от переменных:
х1 – ВВП на душу населения, тыс. $, по итогам 2009г;
х2 – фактическое конечное потребление домашних хозяйств по паритету покупательной способности на душу населения (Россия = 100);
х3 –индекс потребительских цен в %;
х4 – ожидаемая продолжительность жизни при рождении 2009г., число лет;
х5 — суточная колорийность питания населения, ккал на душу населения;
х6 – расходы на здравоохранение, % к ВВП.
Страны y x1 x2 x3 x4 x5 x6
Австралия 0,97 39,9 189 128 82 3261 8,5
Австрия 0,955 39,2 190 119 80 3800 11
Белоруссия 0,826 12,5 81 578 70 3186 5,8
Бельгия 0,953 36,8 182 120 80 3721 11,8
Великобритания 0,947 34,2 217 119 80 3432 9,3
Германия 0,947 34,2 193 116 80 3549 8,1
Дания 0,955 35,9 194 120 78 3378 7
Индия 0,612 3,2 20 199 64 2321 4,1
Испания 0,955 29,3 167 120 81 3239 9,7
Италия 0,951 29,9 174 122 82 3627 9,7
Канада 0,966 38,1 199 120 81 3399 10,9
Казахстан 0,804 11,8 61 212 64 3284 4,3
Китай 0,772 6,7 86 120 74 3036 5,1
Латвия 0,866 14,5 102 176 71 2923 8,1
Нидерланды 0,964 39,4 201 121 80 3261 10,8
Норвегия 0,971 57,6 223 124 81 3453 9,7
Польша 0,88 17,9 104 128 75 3392 7,1
Россия 0,817 15,1 100 304 66 3172 5,1
США 0,956 46 276 125 78 3688 16,2
Украина 0,796 6,3 103 262 68 3198 7
Финляндия 0,959 34,1 186 115 79 3240 11,7
Франция 0,961 32,5 190 117 81 3531 11
Чехия 0,903 24,8 122 122 77 3305 7,6
Швейцария 0,96 41,2 207 108 82 3454 11,3
Швеция 0,963 37 194 115 81 3125 9,9
Требуется:
1. Осуществить выбор факторных признаков для построения двухфакторной регрессионной модели.
2. Рассчитать параметры модели.
3. Для оценки качества всего уравнения регрессии определить:
— линейный коэффициент множественной корреляции;
— коэффициент детерминации.
4. Осуществить оценку значимости уравнения регрессии.
5. Оценить с помощью t-критерия Стьюдента статистическую значимость коэффициентов уравнения множественной регрессии.
6. Оценить влияние факторов на зависимую переменную по модели. Для этого рассчитайте:
— β-коэффициенты;
— коэффициенты эластичности.

Задача 2.
Исследовать динамику экономического показателя на основе анализа одномерного временного ряда
В течение последовательных недель фиксировался спрос Y(t) (млн р.) на кредитные ресурсы финансовой компании. Временной ряд Y(t) этого показателя (повариантно) приведен в таблице.
Таблица 1

наблюдения
6
1 115
2 109
3 103
4 101
5 100
6 103
7 104
8 102
9 100
10 101
11 103
12 100
13 102
14 103
15 105
Требуется:
1) Проверить наличие аномальных наблюдений с помощью критерия Ирвина.
2) С помощью критерия «восходящих» и «нисходящих» серий сделать вывод о присутствии или отсутствии тренда.
3) С помощью среднего прироста сделать прогноз спроса на кредитные ресурсы на следующие две недели.
4) Вычисления провести с одним знаком в дробной части. Основные промежуточные результаты вычислений представить в таблицах. Доверительную вероятность принять равной 0,95.
»

Стоимость данной учебной работы: 585 руб.Учебная работа № /7984.  "Контрольная Эконометрика, вариант 6 59

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


    Выдержка из похожей работы

    И, Ползунова»
    Институт экономики и управления
    Кафедра «Экономика, финансы и кредит»
    РАСЧЕТНОЕ ЗАДАНИЕ
    по дисциплине «Эконометрика»
    Студент группы ЭК — 23
    Л,В, Евдокова
    Руководитель работы
    Доцент Е,М, Гельфанд
    БАРНАУЛ 2014
    Содержание

    Исходные данные
    Множественная модель уравнения регрессии
    Уравнение парной линейной регрессии
    Предпосылки МНК
    Список использованной литературы
    Приложения

    Исходные данные

    Средняя урожайность зерна (ц/га), У

    Орошение земель (тыс, га), Х1

    Курс доллара, Х2

    17,2

    3,5

    30,3647

    28,1

    3,4

    28,9503

    27,2

    1,5

    29,3282

    21,2

    0,5

    29,3627

    18,7

    2,8

    32,4509

    37,3

    3,1

    32,8169

    32,4

    2,1

    32,1881

    31

    0,6

    32,2934

    11,9

    1,8

    30,9169

    20,6

    2,9

    31,5252

    18,4

    2,7

    31,0565

    31,3

    1,5

    30,3727

    20,5

    1,6

    30,0277

    18,8

    2,4

    30,6202

    18,5

    2,6

    31,0834

    17,1

    3,3

    31,2559

    23,7

    3,2

    31,5893

    28,8

    2,7

    32,709

    24,2

    2

    32,8901

    25,8

    0,7

    33,2474

    17,3

    0,99

    32,3451

    19,1

    1,25

    32,0613

    15,7

    0,9

    33, 1916

    16,7

    0,7

    32,7292

    19,7

    3,5

    35,2448

    22,1

    3

    36,0501

    23

    2,9

    35,6871

    24

    0,1

    35,6983

    25,7

    0,5

    34,7352

    102,7

    0,4

    33,6306

    Множественная модель уравнения регрессии

    Средняя урожайность зерна (ц/га), У

    Орошение земель (тыс, га), Х1

    Курс доллара, Х2

    17,2

    3,5

    30,3647

    28,1

    3,4

    28,9503

    27,2

    1,5

    29,3282

    21,2

    0,5

    29,3627

    18,7

    2,8

    32,4509

    37,3

    3,1

    32,8169

    32,4

    2,1

    32,1881

    31

    0,6

    32,2934

    11,9

    1,8

    30,9169

    20,6

    2,9

    31,5252

    18,4

    2,7

    31,0565

    31,3

    1,5

    30,3727

    20,5

    1,6

    30,0277

    18,8

    2,4

    30,6202

    18,5

    2,6

    31,0834

    17,1

    3,3

    31,2559

    23,7

    3,2

    31,5893

    28,8

    2,7

    32,709

    24,2

    2

    32,8901

    25,8

    0,7

    33,2474

    17,3

    0,99

    32,3451

    19,1

    1,25

    32,0613

    15,7

    0,9

    33, 1916

    16,7

    0,7

    32,7292

    19,7

    3,5

    35,2448

    22,1

    3

    36,0501

    23

    2,9

    35,6871

    24

    0,1

    35,6983

    25,7

    0,5

    34,7352

    102,7

    0,4

    33,6306

    Высчитываем значения коэффициента частной и парной корреляции, а так же необходимые значения, для уравнений множественной регрессии:
    · y=a+b1x1+b2x2
    · ty=в1tx1+в2tx2

    Признак

    Среднее значение

    СКО

    Лин, коэф,
    парной коррел,

    Линейные коэф,
    частных коррел,

    y

    25,75714

    16,17129

    ryx1

    0,138691

    rx1x2

    0,111461

    x1

    32,21409

    1,923079

    ryx2

    -0,26109

    rx2x1

    -0,24839

    x2

    1,971333

    1,099341

    rx1x2

    -0,12219

    rx1x2y

    -0,08993

    Если сравнивать значения коэффициентов парной и частной корреляции, то приходим к выводу, Что из-за слабой межфакторной связи (rx1x2= — 0,12219) коэффициенты парной и частной корреляции отличаются незначительно,
    И следовательно значения: в1, в2, b1, b2, a,

    в1

    в2

    0,108407

    -0,24785

    b1

    b2

    a

    Ryx1x2

    0,911602

    -3,64581

    3,577821

    0,2824

    Найдем: Fx1факт, Fx2факт, для 30 нами выбранных значений и найденного нами индекса Множественной корреляции (Ryx1x2),

    Fx1факт

    Fx2факт

    0,339655

    1,775355

    Средний коэффициент эластичности: показывает, на сколько % в среднем измениться показатель y, от своего среднего значения при изменении фактора x на 1 % от своей величины,

    Эyx1ср, %

    Эyx2ср, %

    1,140127

    -0,27903

    Далее найдем значение дисперсии для каждого из следующих признаков: x1,x2,y,

    Дисп x1

    Дисп x2

    Дисп y

    3,698232

    1, 20855

    261,5107

    В результате всех вычислений получаем уравнение множественной регрессии: y=3,577821+0,911602*x1-3,64581*x2, ty=0,108407*tx1-0,24785tx2, Поскольку фактическое значение Fфакт = 0,3033 < Fтабл, (4,47), то коэффициент детерминации статистически не значим, а следовательно, полученное уравнение регрессии статистически ненадежно, Это означает, что его нельзя использовать для прогноза и дальнейшего анализа, Уравнение парной линейной регрессии Выбираем один из значимых признаков, для построения парной модели, (x1, y) и рассчитываем показатели: x1 y xy yт yт-y |yт-y| |yт-y|/y |yт-y|/y*100 3,5 17,2 60, 20 19,69 2,49 2,49 0,14 14,45 3,4 28,1 95,54 20,05 -8,05 8,05 0,29 28,64 1,5 27,2 40,80 27,02 -0,18 0,18 0,01 0,67 0,5 21,2 10,60 30,68 9,48 9,48 0,45 44,73 2,8 18,7 52,36 22,25 3,55 3,55 0, 19 19,00 3,1 37,3 115,63 21,15 -16,15 16,15 0,43 43,29 2,1 32,4 68,04 24,82 -7,58 7,58 0,23 23,40 0,6 31 18,60 30,32 -0,68 0,68 0,02 2, 20 1,8 11,9 21,42 25,92 14,02 14,02 1,18 117,80 2,9 20,6 59,74 21,89 1,29 1,29 0,06 6,24 2,7 18,4 49,68 22,62 4,22 4,22 0,23 22,93 1,5 31,3 46,95 27,02 -4,28 4,28 0,14 13,68 1,6 20,5 32,80 26,65 6,15 6,15 0,30 30,01 2,4 18,8 45,12 23,72 4,92 4,92 0,26 26,16 2,6 18,5 48,10 22,99 4,49 4,49 0,24 24,25 3,3 17,1 56,43 20,42 3,32 3,32 0, 19 19,41 3,2 23,7 75,84 20,79 -2,91 2,91 0,12 12,30 2,7 28,8 77,76 22,62 -6,18 6,18 0,21 21,46 2 24,2 48,40 25,18 0,98 0,98 0,04 4,07 0,7 25,8 18,06 29,95 4,15 4,15 0,16 16,09 0,99 17,3 17,13 28,89 11,59 11,59 0,67 66,98 1,25 19,1 23,88 27,93 8,83 8,83 0,46 46,25 0,9 15,7 14,13 29,22 13,52 13,52 0,86 86,10 0,7 16,7 11,69 29,95 13,25 13,25 0,79 79,34 3,5 19,7 68,95 19,69 -0,01 0,01 0,00 0,07 3 22,1 66,30 21,52 -0,58 0,58 0,03 2,63 2,9 23 66,70 21,89 -1,11 1,11 0,05 4,84 0,1 24 2,40 32,15 8,15 8,15 0,34 33,96 0,5 25,7 12,85 30,68 4,98 4,98 0, 19 19,39 0,4 102,7 41,08 31,05 -71,65 71,65 0,70 69,77 Уравнение парной линейной регрессии имеет вид: = а+bx, Находим средние значения (xср,, yср и их произведения xyср,), по совокупности n=30, Хср yср xyср 1,9713 25,2900 45,5724 Далее, находим Дисперсию по (x и y), а так же Среднее Квадратическое Отклонение (СКО) этих показателей, Дх СКОх Дy СКОy 1,1683 1,0809 238,4229 15,4409 b a -3,6658 32,5165 Посчитаем значения параметров a и b, Находим Aсред, Из всей совокупности (Ai) = 30,0036"