Учебная работа № /7831. «Контрольная Теория вероятности, задача

Учебная работа № /7831. «Контрольная Теория вероятности, задача

Количество страниц учебной работы: 1
Содержание:
На окружности радиуса случайным образом выбраны две точки и . Найти вероятность того, что площадь большего из полученных секторов превышает площадь меньшего, но не более чем в 3 раза.

Стоимость данной учебной работы: 195 руб.Учебная работа № /7831.  "Контрольная Теория вероятности, задача

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


    Выдержка из похожей работы

    Составить закон распределения случайной величины Х — числа известных студенту вопросов в билете, Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины,
    Решение
    Введем дискретную случайную величину = (Количество известных студенту вопросов в билете), Она может принимать значения 0, 1, 2 или 3, Найдем соответствующие вероятности,
    , если все три вопроса студенту неизвестны, Вероятность этого события по классическому определению вероятности равна:
    ,
    , если один вопрос известен и два вопроса студенту неизвестны, Вероятность этого события по классическому определению вероятности равна:
    ,
    , если один вопрос неизвестен и два вопроса студенту известны, Вероятность этого события по классическому определению вероятности равна:
    ,
    , если все три вопроса студенту известны, Вероятность этого события по классическому определению вероятности равна:
    ,
    математический дисперсия среднеквадратический закон
    Закон распределения случайной величины имеет вид:

    0

    1

    2

    3

    1/114

    15/114

    35/76

    91/228

    Сумма вероятностей равна 1, поэтому расчеты проведены верно,
    Найдем математическое ожидание, дисперсию и функцию распределения,
    Математическое ожидание
    ,
    Дисперсия
    ,
    Среднеквадратическое отклонение
    Задача 2
    Решение
    Найдем плотность распределения
    Это плотность распределения равномерного на отрезке распределения,
    Найдем математическое ожидание:
    Найдем дисперсию:
    Найдем вероятность попадания случайной величины в интервал (б,в) = (0,5; 3), Получим:
    Построим схематично графики и ,
    Рисунок 1
    Рисунок 2

    «