Учебная работа № 5091. «Контрольная Высшая математика, вариант 2, Контрольная работа №1

Учебная работа № 5091. «Контрольная Высшая математика, вариант 2, Контрольная работа №1

Количество страниц учебной работы: 24
Содержание:
Контрольная работа №1.
Вариант 2

Задание №1.

Найти все миноры определителя

Задание №3.

Найти обратную матрицу

Задание № 5.

Решить систему линейных уравнений:
5.1. по правилу Крамера;
5.2. матричным методом;
5.3. методом Гаусса.

Задание № 9.

Составить уравнение геометрического места точек, равноудаленных от данной точки A(x1; y1) и данной прямой y = b. Полученное уравнение привести к простейшему виду и затем построить кривую.

А(–2; –3); у= –1
Задание №12.

Даны координаты вершин пирамиды ABCD. Требуется:

1) Записать векторы , и в системе орт и найти модули этих векторов.
2) Найти угол между векторами и .
3) Найти проекцию вектора на вектор .
4) Найти площадь грани ABC.
5) Найти объем пирамиды ABCD.

А(–1; 1; –5); В( 3; 5; –7); С(1; 12; –15); D( –1; 3; –4)
Задание № 13.

Даны координаты точек A, B, C и M. Требуется:
1) Составить уравнение плоскости Q, проходящей через точки A, B и C.
2) Составить каноническое уравнение прямой, проходящей через точку M, перпендикулярно плоскости Q.
3) Найти точки пересечения полученной прямой с плоскостью Q и с координатными плоскостями XOY, XOZ и YOZ.
4) Найти расстояние от точки M до плоскости Q.

А(1; –4; 1); В(4; 4; 0); С(–1; 2; –4); М( –9; 7; 8)
Задание № 14.
Даны координаты точек A, B и C. Требуется найти:
1) Канонические уравнения прямой AB.
2) Уравнение плоскости, проходящей через точку C перпендикулярно прямой AB и точку пересечения этой плоскости с прямой AB.
3) Расстояние от точки C до прямой AB.

A(–3; 1; 2); B(1; 3; –2); C(–2; 0; –2)

Задание № 15.

Найти угол между плоскостью P1, проходящей через точки A1, A2 и A3 и плоскостью P, заданной уравнением Ах+Ву+Сz+D=0

А1(–1; –2; 1); A2(–2; –2; 5); A3(–3; –1; 1); 2x+2y+z–1=0

Четыре вектора , , и . Показать, что векторы , и образуют базис. Разложить по этому базису вектор .
Задание № 7.
Даны координаты вершин треугольника ABC. Найти:
1) длину стороны AB;
2) уравнения сторон AB и BC и их угловые коэффициенты;
3) угол B в радианах с точностью до двух знаков;
4) уравнение высоты CD и ее длину;
5) уравнение медианы AE и координаты точки K ? точки пересечения этой медианы с высотой CD;
6) уравнение прямой, проходящей через точку K параллельно стороне AB;
7) координаты точки M, расположенной симметрично точки A относительно прямой CD.

А(0; 2); В(12; –7); С(16; 15).

Контрольная работа №2.

Задание № 1.

Найти неопределенный интеграл:

Задание № 2.

Вычислить определенный интеграл:

Исследовать интеграл на сходимость:

Задание № 12.
Вычислить двойной интеграл по заданной области D, область изобразить.

Задание № 13.
Вычислить значение интеграла

Задание № 14.

Вычислить значение интеграла

Задание № 15.
Вычислить пределы функций, не пользуясь правилом Лопиталя.

a)
б)
в)
г)
д)
Задание № 16.

Найти производную функции

а)

б)
Задание № 18.

Вычислить: а), б) – неопределенный интеграл, в) – определенный интеграл

Задание № 19.

Найти частные производные первого и второго порядка.

z=x5y2–ln(x+y2)–y2

Стоимость данной учебной работы: 585 руб.Учебная работа № 5091.  "Контрольная Высшая математика, вариант 2, Контрольная работа №1

Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

Укажите № работы и вариант


Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


Введите символы с изображения:

captcha

Выдержка из похожей работы

Найдём ранг основной
матрицы системы с помощью элементарных
преобразований:

~
~

Таким образом,
= 2
Так как ранг системы
меньше числа неизвестных, то система
имеет ненулевые решения, Размерность
пространства решений этой системы: n
– r
= 4 – 2 = 2
Преобразованная
система имеет вид:

<=>
<=>

<=>

Эти формулы дают
общее решение, В векторном виде его
можно записать следующим образом:

=
=
=
*
+

где
,
− произвольные числа

Вектор−столбцы:

=
и
=
образуют базис
пространства решений данной системы,

Задание 74,
Даны два линейных
преобразования, Средствами матричного
исчисления найти преобразование,
выражающее x1′′,
x2′′,
x3′′
через x1,
x2,
x3

Решение

Первое линейное
преобразование:

= A
*
имеет матрицу А =

Второе:

= B
*
имеет матрицу В =
(*)
Тогда если в (*)
вместо В и
поставить соответствующие матрицы,
получим:

C
= B
* A
, то есть

C
=
*
=

Поэтому искомое
линейное преобразование имеет вид:

=
*

Задание 84,
Найти собственные
значения и собственные векторы линейного
преобразования, заданного в некотором
базисе матрицей,

Составляем
характеристическое уравнение матрицы:

=
= 0

(5−λ)
*
+ 7 *
+ 0 *
= 0

(5−λ)
(1−λ)
(−3−λ)
+ 7 (−3) (−3−λ)
= 0 (**)
(5−6λ+)
(−3−λ)
+ 63 + 21λ
= 0
−15 +18λ
− 3
− 5λ
+ 6

+ 63 + 21λ
= 0
48 + 34λ
+ 3

= 0 <=> (**) (λ
– 8) (λ
+ 2) (λ
+ 3) = 0
то есть
= 8 ,
= −3 ,
= −2

При
= 8 система имеет вид:

=>

Выразим
через :

4 * (−7)
+ 6
= 11
−22
= 11
=>
= −0,5

Выразим
через :

12
+ 6*()
= 11

84
− 18
= 77
66
= 77
=>
= 1

Таким образом,
числу
= 8 соответствует собственный вектор:

=
=
=

где
− произвольное действительное число

Аналогично для

= −3

<=>
=
= 0

Таким образом,
числу
= −3 соответствует собственный вектор

=
=
=

Наконец для
= −2 решаем систему:

=>

то есть вектор

=
=
=

Итак, матрица А
имеет три собственных значения:
= 8 ,
= −3 ,
= −2, Соответствующие им собственные
векторы (с точностью до постоянного
множителя) равны:

=

=

=

Задача 94,
Привести к
каноническому виду уравнение линии
второго порядка, используя теорию
квадратичных форм,

Левая часть
уравнения
представляет собой квадратичную форму
с матрицей:
А =
Решаем
характеристическое уравнение:

= 0 , то есть
= 0
<=> (5−λ)
(3−λ)
= 8

− 8λ
+ 7 = 0

= 1 ,
= 7

Найдём собственные
векторы из системы уравнений

при
= 1 ,
= 7

Если
= 1 , то:

=>
=

Значит собственный
вектор
=
для
= 1

Если
= 7 , то:

=>
=

значит собственный
вектор
=
для
= 7

Нормируем собственные
векторы, по правилу:

=
, получаем:

=

=

Составляем матрицу
перехода от старого базиса к новому:

T
=

Выполняя
преобразования:

= T

=
*
=
=>
x
=
+
, y
= +

Подставим полученные
x
и y
в исходное уравнение и полученное
уравнение упростим:

5
+

+ 3
= 14

+
+ 22
+
= 14

+ 10
+ 10
− 8
− 4
+ 8
+ 6
− 6
+ 3
= 42

+ 21
= 42 =>

+
= 1 – каноническое уравнение эллипса

Добавить комментарий

Ваш e-mail не будет опубликован.