Учебная работа № /2967. Курсовая Основы электротехники, вариант 12

Учебная работа № /2967. Курсовая Основы электротехники, вариант 12


Содержание:
«СОДЕРЖАНИЕ
Введение 3
1 Теоретический раздел 4
1.1 Основные понятия и характеристики однофазного синусоидального тока 4
1.2 Представление синусоидальных электрических величин временными диаграммами, векторами и комплексными числами. 5
1.3 Закон Кирхгофа в комплексной форме 8
2 Расчётный раздел 10
2.1 Задание на курсовую работу 10
2.2 Выбор схемы согласно варианту 11
2.3 Составление системы уравнений согласно законам Кирхгофа 11
2.4 Расчет эквивалентного комплексного сопротивления 12
2.5 Расчет полученной электрической цепи 14
2.6 Построение векторной диаграммы 16
Заключение 18
Список литературы 19?

Задание на курсовую работу
а) В соответствии порядковым номером по журналу выбрать вариант схемы по рисунку 2.1. Различные конфигурации схемы образуются в зависимости от положения ключей «К1-К5», которые устанавливаются по номеру варианта, представленному в двоичном коде. Номера позиций единиц и нулей в номере варианта следуют слева направо.
б) Определить параметры элементов схемы
Исходные данные:
e1=Um1sin(1000t+?1);
e2=Um2sin(1000t+?2);
Um1=141 В; ?1=30°;
Um2=92 В; ?2=45°;
R3=100 Ом; R4=45 Ом; с1=10 мкФ; с3=20 мкФ.
2.2 Выбор схемы согласно варианту
На рисунке 2.2 изображена электрическая схема синусоидального тока согласно варианту 12.
Список литературы

1) Попов В.П Основы теории цепей. – М: Высшая школа, 1985.-420 с.

2) Питолин В.М., Селезнев А.Т. Основы электротехники: Учебное пособие. – Воронеж: ВИВТ, 2004, 162 с.

3) Бессонов Л.А. Теоретические основы электротехники. Электрические цепи: Учебник. Б — М.: Гардарики, 2001. – 638 с.
»

Стоимость данной учебной работы: 975 руб.
Учебная работа № /2967.  Курсовая Основы электротехники, вариант 12

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    схемы, которые имеют дело с информацией, представленной в
    виде »единиц» и »нулей»,Цифровые переменные имеют только два уровня, (рис.
    1,б),Эти уровни напряжения называют верхним и нижним, или обозначают терминами
    »истина» и »ложь», которые связаны с булевой логикой, или »включено» и
    »выключено», которые отражают состояние релейной системы, а чаще »нулем» и
    »единицей».

               Благодаря высокой эффективности цифровые методы широко используются
    для передачи, отбора и запоминания информации, даже в тех случаях, когда
    входные и выходные данные имеют непрерывную или анало- говую форму,В этом
    случае информацию необходимо преобразовывать при помощи цифро-аналоговых (ЦАП)
    и аналогово-цифровых преобразователей (АЦП),

    а                                                               
    б

                 верхний
    предел                                          
    высокий уровень  

                            

                 нижний
    предел                                                  низкий уровень

    а –аналоговый сигнал;                                        б
    –цифровой сигнал;

    1.
    ЦИФРОВЫЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

       

               Интегральная микросхема – это
    микроэлектронное изделие выпол-няющее определенную функцию преобразования и
    обработки сигнала и  имеющее не менее пяти элементов (транзисторов, диодов,
    резисторов, кон- денсаторов), которые нераздельно связаны и электрически
    соединены между собой так, что устройство рассматривается как единое целое.

               Высокая надежность и качество в сочетании с
    малыми размерами, массой и низкой стоимостью интегральных микросхем обеспечили
    их широ- кое применение во многих отраслях народного хозяйства.

               По конструктивно-технологическим признакам
    различают пленочные, полупроводниковые и гибридные микросхемы.

               Пленочные микросхемы изготавливают
    посредством послойного нанесения на диэлектрическое основание (подложку) пленок
    различных материалов с одновременным формированием транзисторов, диодов и т.п.
    Пленочные микросхемы делятся на тонкопленочные (толщина пленки до 1мкм) и
    толстопленочные.

               Полупроводниковая интегральная
    микросхема – это интегральная
    микросхема, все элементы и межэлектродные соединения которой выполне- ны в объеме
    и на поверхности проводника (рис,2 а,б).

               При
    изготовлении полупроводниковых интегральных микросхем обычно используют
    планарную технологию,

               Активные и пассивные элементы полупроводниковой интегральной
    микросхемы избирательно формируют в одном монокристалле полупровод- ника.
    Соединение элементов между собой в полупроводниковой интеграль- ной микросхеме
    может быть выполнено как в объеме, так и на поверхности монокристалла
    полупроводника путем создания на окисленной поверхности полупроводника
    токоведущих дорожек, например, методом вакуумного на-пыления металла,В
    качестве конденсаторов в микросхемах используют об-ратно смещенные p-n-переходы
    или конденсаторные структуры Si-SiO2-металл,Роль резисторов выполняют участки
    поверхности полупроводни-кового кристалла или p-n-переход,
    смещенный в прямом или обратном нап-равлении, а также канал МДП-транзисторов.

               В интегральной микросхеме не всегда можно указать границу
    между отдельными элементами,Например, вывод конденсатора может одновре-менно
    являться электродом конденсатора,Из-за малых межэлектродных расстояний и
    наличия общего для всех элементов схемы кристалла (подлож-ки) в микросхемах
    создаются достаточно сложные паразитные связи, а так же появляются паразитные
    элементы, которые, как правило, ухудшают все парараметры микросхемы, как
    функционального узла радиоэлектронной аппаратуры.

       

    а

    б

    в

    Рис,2

    а – эквивалентная
    схема; б – структура полупроводниковой интегральной микросхемы;

    в – структура гибридной
    интегральной микросхемы;

               Гибридная интегральная микросхема – это интегральная
    микросхема                                                                                                                                                 
                  пассивные элементы которой выполнены посредством нанесения
    различных пленок на поверхность диэлектрической подложки из стекла, керамики
    или ситалла, а активные элементы – навесные полупроводниковые приборы без
    корпусов (рис,2,в).

               Гибридные интегральные
    микросхемы позволяют использовать пре- имущества пленочной технологии в
    сочетании с полупроводниковой тех-нологией,

               Полупроводниковая интегральная
    микросхема может быть изготов- лена по совмещенной технологии – активные элементы
    выполнены в объеме полупроводникового монокристалла, а пассивные элементы – на
    защищен-ной (например, окислом) поверхности монокристалла в тонкопленочном
    ис-полнении,На этой же поверхности сделаны и токопроводящие дорожки и площадки