Учебная работа № /7526. «Контрольная Теория вероятности, вариант 4 61

Учебная работа № /7526. «Контрольная Теория вероятности, вариант 4 61

Количество страниц учебной работы: 5
Содержание:
Вариант 4
1. В урне 5 белых и 5 черных шаров. Из этой урны последовательно извлечены все шары по одному и разложены в ряд. Какова вероятность того, что цвета шаров чередуются?
2. В группе из 20 стрелков имеются 4 отличных, 10 хороших и 6 посредственных стрелков. Вероятность попадания в цель при одном выстреле для отличного стрелка равна 0,9, для хорошего 0,7, для посредственного 0,5. Найдите вероятность того, что наудачу выбранный стрелок попадает в цель.
3. Вероятность того, что покупателю требуется обувь 41-го размера, равна 0,2. Найдите вероятность того, что среди 100 покупателей потребуют обувь 41-го размера 25 человек.
4. Из пяти гвоздик две белые. Составить закон распределения, найти и построить функцию распределения случайной величины, выражающей число белых гвоздик среди двух одновременно взятых.
5. Непрерывная случайная величина Х задана плотностью вероятности:

Найдите М(Х), D(Х), σ(х).
6. В результате 50 независимых измерений некоторой величины получены данные:
2,2 5,3 3,4 4,5 5,1 3,4 4,3 2,7 3,5 5,8
2,3 4,4 4,7 2,1 4,8 3,6 3,5 4,2 5,7 3,7
4,2 3,4 4,3 3,4 4,3 4,1 5,3 4,8 5,1 2,4
3,7 4,3 5,6 4,5 3,4 3,2 4,6 3,6 4,2 4,1
5,5 4,6 4,8 4,5 4,3 4,8 3,9 3,8 5,9 5,1

Составьте интервальную таблицу частот, выбрав интервалы 2-3, 3-4, 4-5, 5-6; постройте гистограмму; найдите выборочное среднее, выборочную дисперсию, исправленную выборочную дисперсию, исправленное среднее квадратическое отклонение; постройте доверительный интервал для математического ожидания с надежностью 0,95.

Стоимость данной учебной работы: 585 руб.Учебная работа № /7526.  "Контрольная Теория вероятности, вариант 4 61

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


    Выдержка из похожей работы

    ru/
    Министерство образования и науки Российской федерации
    Филиал ГОУ ВПО БГУЭП «Байкальский государственный университет экономики и права» в г,Усть-Илимске
    Контрольная работа по курсу
    «Теория вероятностей и математическая статистика»
    Вариант 7
    Выполнил студент гр,_______
    Семенова Е,С,
    Усть-Илимск
    2013
    Задача 1

    Крупная торговая компания занимается оптовой продажей материалов для строительства и ремонта жилья и, имея список покупателей в 3 регионах, рассылает им по почте каталог товаров, Менеджер компании полагает, что вероятность того, что компания не получит откликов на разосланные предложения ни из одного региона, равна 0,25, Чему в этом случае равна вероятность того, что компания получит ответ хотя бы из одного региона?
    Решение, Введем следующие событие А={компания не получит откликов на разосланные предложения ни из одного региона}, тогда событие, что компания получит ответ хотя бы из одного региона ему противоположное, Вероятность противоположного события равна и составляет 0,75,
    Ответ: 0,75
    Задача 2

    В лотерее разыгрывается автомобиль стоимостью 5000 д,е,, 4 телевизора стоимостью 250 д,е,, 5 видеомагнитофонов стоимостью 200 д,е, Всего продается 1000 билетов по 7 д,е, Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет, Найти дисперсию этой случайной величины,
    Решение, Пусть дискретная случайная величина Х соответствует чистому выигрышу лотереи, Значения, которые может принимать данная величина:

    Чистый выигрыш

    Событие лотереи

    -7

    Билет не выиграл (проигрыш)

    5000-7=4993

    Билет выиграл автомобиль

    250-7 = 243

    Билет выиграл телевизор

    200-7 = 193

    Билет выиграл видеомагнитофон

    Количество выигрышных билетов составляет 1 + 4 + 5 = 10 шт, Тогда проигрышных билетов 1000 — 10 = 990 шт,
    Определим вероятности событий лотереи:
    Р(Х = -7) = 990/1000 = 0,99
    Р(Х = 4993) = 1/1000 = 0,001
    Р(Х = 243) = 4/1000 = 0,004
    Р(Х = 193) = 5/1000 = 0,005
    Составим ряд распределения:

    хi

    -7

    193

    243

    4993

    pi

    0,99

    0,005

    0,004

    0,001

    Математическое ожидание случайной величины Х найдем по формуле , то есть вся полученная выручка от продажи билетов идет на приобретение призов,
    Для определения дисперсии воспользуемся формулой , Для дискретной случайной величины имеем
    Ответ: 25401
    Задача 3

    Случайная величина Х распределена по закону с плотностью , зависящей от постоянного параметра С:
    ,
    Найти: 1) значение постоянной С; 2) функцию распределения ; 3) математическое ожидание и дисперсию случайной величины Х; 4) вероятность того, что случайная величина Х примет значение из интервала (0, 2); 5) построить графики функций , «