Учебная работа № 4827. «Контрольная Высшая математика, контрольная работа №2

Учебная работа № 4827. «Контрольная Высшая математика, контрольная работа №2

Количество страниц учебной работы: 7
Содержание:
Контрольная работа № 2
2. Найти неопределенные интегралы. Результаты проверить дифференцированием.
а)
б)
в)
12. Вычислить определенный интеграл
22. Вычислить несобственные интегралы или указать их расходимость
32. Вычислить площадь фигуры, ограниченной графиками данных фукнций. Сделать чертеж.
и .
42. Найти общее решение дифференциального уравнения и частное решение, удовлетворяющее начальному условию при .
52. Найти общее решение дифференциального уравнения .
62. Решить задачу
В ящике имеются 12 деталей для ремонта, причем в двух из них могут быть скрытые дефекты. Берутся наудачу 3 детали. Найти вероятность того, что две из них будут без дефектов.
72. Станок-автомат штампует гаечные ключи. Вероятность того, что за смену не будет выпущено ни одного нестандартного ключа равна 0,9. Определить вероятность того, что а) за две смены не будет выпущено ни одного нестандартного ключа; б) за 3 смены не будет выпущено ни одного нестандартного ключа.
82. В группе из 20 студентов, пришедших на экзамен, 8 подготовлены отлично, 6 – хорошо, 4 – посредственно и 2 – плохо. В экзаменационных билетах имеются 40 вопросов. Студент, подготовленный отлично, может ответить на все вопросы, хорошо – на 35, посредственно – на 25, плохо – на 10 вопросов. Вызванный наугад студент ответил на 3 произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен плохо.
92. Вероятность изготовления на автоматическом станке стандартной детали равна 0,9. Определить вероятность того, что из 5 наудачу взятых деталей 3 окажутся стандартными.
102. Непрерывная случайная величина Х задана функцией распределения

Найти: плотность распределения вероятности , математическое ожидание , дисперсию и среднеквадратическое отклонение случайной величины, вероятность попадания случайной величины в интервал (-1;1). Построить графики функций .
112. Заданы среднеквадратическое отклонение нормально-распределенной случайной величины Х, выборочная средняя , объем выборки . Найти доверительные интервалы для оценки неизвестного математического ожидания с заданной надежностью .
122. Найти радиус и интервал сходимости степенного ряда. Исследовать сходимость ряда на концах интервала сходимости.
.

Стоимость данной учебной работы: 585 руб.Учебная работа № 4827.  "Контрольная Высшая математика, контрольная работа №2

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    Найдём ранг основной
    матрицы системы с помощью элементарных
    преобразований:

    ~
    ~

    Таким образом,
    = 2
    Так как ранг системы
    меньше числа неизвестных, то система
    имеет ненулевые решения, Размерность
    пространства решений этой системы: n
    – r
    = 4 – 2 = 2
    Преобразованная
    система имеет вид:

    <=>
    <=>

    <=>

    Эти формулы дают
    общее решение, В векторном виде его
    можно записать следующим образом:

    =
    =
    =
    *
    +

    где
    ,
    − произвольные числа

    Вектор−столбцы:

    =
    и
    =
    образуют базис
    пространства решений данной системы,

    Задание 74,
    Даны два линейных
    преобразования, Средствами матричного
    исчисления найти преобразование,
    выражающее x1′′,
    x2′′,
    x3′′
    через x1,
    x2,
    x3

    Решение

    Первое линейное
    преобразование:

    = A
    *
    имеет матрицу А =

    Второе:

    = B
    *
    имеет матрицу В =
    (*)
    Тогда если в (*)
    вместо В и
    поставить соответствующие матрицы,
    получим:

    C
    = B
    * A
    , то есть

    C
    =
    *
    =

    Поэтому искомое
    линейное преобразование имеет вид:

    =
    *

    Задание 84,
    Найти собственные
    значения и собственные векторы линейного
    преобразования, заданного в некотором
    базисе матрицей,

    Составляем
    характеристическое уравнение матрицы:

    =
    = 0

    (5−λ)
    *
    + 7 *
    + 0 *
    = 0

    (5−λ)
    (1−λ)
    (−3−λ)
    + 7 (−3) (−3−λ)
    = 0 (**)
    (5−6λ+)
    (−3−λ)
    + 63 + 21λ
    = 0
    −15 +18λ
    − 3
    − 5λ
    + 6

    + 63 + 21λ
    = 0
    48 + 34λ
    + 3

    = 0 <=> (**) (λ
    – 8) (λ
    + 2) (λ
    + 3) = 0
    то есть
    = 8 ,
    = −3 ,
    = −2

    При
    = 8 система имеет вид:

    =>

    Выразим
    через :

    4 * (−7)
    + 6
    = 11
    −22
    = 11
    =>
    = −0,5

    Выразим
    через :

    12
    + 6*()
    = 11

    84
    − 18
    = 77
    66
    = 77
    =>
    = 1

    Таким образом,
    числу
    = 8 соответствует собственный вектор:

    =
    =
    =

    где
    − произвольное действительное число

    Аналогично для

    = −3

    <=>
    =
    = 0

    Таким образом,
    числу
    = −3 соответствует собственный вектор

    =
    =
    =

    Наконец для
    = −2 решаем систему:

    =>

    то есть вектор

    =
    =
    =

    Итак, матрица А
    имеет три собственных значения:
    = 8 ,
    = −3 ,
    = −2, Соответствующие им собственные
    векторы (с точностью до постоянного
    множителя) равны:

    =

    =

    =

    Задача 94,
    Привести к
    каноническому виду уравнение линии
    второго порядка, используя теорию
    квадратичных форм,

    Левая часть
    уравнения
    представляет собой квадратичную форму
    с матрицей:
    А =
    Решаем
    характеристическое уравнение:

    = 0 , то есть
    = 0
    <=> (5−λ)
    (3−λ)
    = 8

    − 8λ
    + 7 = 0

    = 1 ,
    = 7

    Найдём собственные
    векторы из системы уравнений

    при
    = 1 ,
    = 7

    Если
    = 1 , то:

    =>
    =

    Значит собственный
    вектор
    =
    для
    = 1

    Если
    = 7 , то:

    =>
    =

    значит собственный
    вектор
    =
    для
    = 7

    Нормируем собственные
    векторы, по правилу:

    =
    , получаем:

    =

    =

    Составляем матрицу
    перехода от старого базиса к новому:

    T
    =

    Выполняя
    преобразования:

    = T

    =
    *
    =
    =>
    x
    =
    +
    , y
    = +

    Подставим полученные
    x
    и y
    в исходное уравнение и полученное
    уравнение упростим:

    5
    +

    + 3
    = 14

    +
    + 22
    +
    = 14

    + 10
    + 10
    − 8
    − 4
    + 8
    + 6
    − 6
    + 3
    = 42

    + 21
    = 42 =>

    +
    = 1 – каноническое уравнение эллипса