Учебная работа № 4323. «Контрольная Эконометрика, вариант 83

Учебная работа № 4323. «Контрольная Эконометрика, вариант 83

Количество страниц учебной работы: 25
Содержание:
Задание № 1. Линейный парный регрессионный анализ

На основе данных, приведенных в Приложении 1 и соответствующих Вашему варианту (таблица 2), требуется:

1. Рассчитать коэффициент линейной парной корреляции и построить уравнение линейной парной регрессии одного признака от другого. Один из признаков, соответствующих Вашему варианту, будет играть роль факторного (х), другой – результативного (y). Причинно-следственные связи между признаками установить самим на основе экономического анализа. Пояснить смысл параметров уравнения.

2. Определить теоретический коэффициент детерминации и остаточную (необъясненную уравнением регрессии) дисперсию. Сделать вывод.

3. Оценить статистическую значимость уравнения регрессии в целом на пятипроцентном уровне с помощью F-критерия Фишера. Сделать вывод.

4. Выполнить прогноз ожидаемого значения признака-результата y при прогнозном значении признака-фактора х, составляющим 105% от среднего уровня х. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал с вероятностью 0,95.

Задание № 2. Множественный регрессионный анализ

На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:

1. Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.

2. Рассчитать частные коэффициенты эластичности. Сделать вывод.

3. Определить стандартизованные коэффициенты регрессии (?-коэффициенты). Сделать вывод.

4. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.

5. Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.

Задание № 3. Системы эконометрических уравнений

На основе данных, приведенных в таблице 3 и соответствующих Вашему варианту (таблица 4) провести идентификацию модели и описать процедуру оценивания параметров уравнений структурной формы модели.

Вариант 83 y15 y21 y34

Задание № 4. Временные ряды в эконометрических исследованиях.

На основе данных, приведенных в таблице 10 и соответствующих Вашему варианту (таблица 11), постройте модель временного ряда. Для этого требуется:

1. Построить коррелограмму и определить имеет ли ряд тенденцию и сезонные колебания.

2. Провести сглаживание ряда скользящей средней и рассчитать значения сезонной составляющей.

3. Построить уравнения тренда и сделать выводы.

4. На основе полученной модели сделать прогноз на следующие два квартала с учетом выявленной сезонности.

Исходные данные

Год 2002 2003 2004 2005

Квартал III IV I II III IV I II III IV I II

хt 87 75 84 63 86 82 78 72 84 102 112 92

Стоимость данной учебной работы: 975 руб.Учебная работа № 4323.  "Контрольная Эконометрика, вариант 83

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


    Выдержка из похожей работы


    Вариант 5

    Тип
    школы
    Хорошее
    освоение курса (тыс,чел)
    Среднее
    освоение курса (тыс,чел)
    Проблемы
    с освоением курса (тыс,чел)

    А
    85,0
    11,2
    3,8

    В
    79,3
    10,7
    9,4

    С
    61,5
    17,6
    20,3

    Преобразуем таблицу:

    Тип
    школы
    Хорошее
    освоение курса (тыс,чел)
    Среднее
    освоение курса (тыс,чел)
    Проблемы
    с освоением курса (тыс,чел)
    Итого

    А
    85,0
    11,2
    3,8
    100

    В
    79,3
    10,7
    9,4
    99,4

    С
    61,5
    17,6
    20,3
    99,4

    Итого
    225,8
    39,5
    33,5
    298,8

    Оценим
    -коэффициент:
    ,,
    ,

    ,

    18,83

    связь слабая положительная,
    ———————————————————————————————————————

    Оценим С-коэффициент сопряженности:
    связь слабая
    ———————————————————————————————————————
    Оценим V-коэффициент
    Крамера:
    =
    =
    0,18значимой связи нет
    ———————————————————————————————————————
    Оценим коэффициент взаимной сопряженности
    Чупрова:
    ,

    φ2– это показатель взаимной
    сопряженности, определяемый следующим
    образом:
    1+φ²=
    85²/(225,8*100)+11,2²/(39,5*100)+3,8²/(33,5*100)+79,3²/(225,8*99,4)+10,7²/(39,5*99,4)+9,4²/((33,5*99,4)+61,5²/(225,8*99,4)+17,6²/(39,5*99,4)+20,3²/(33,5*99,4)=0,32+0,03+0,004+0,28+0,029+0,03+0,17+0,08+0,12=1,063
    φ²=1,063-1=0,063

    значимой связи нет,
    Коэффициент ранговой корреляции
    Спирмена:
    Коэффициент корреляции Спирмена — это
    аналог коэффициента корреляции Пирсона,
    но подсчитанный для ранговых переменных,
    вычисляется он по следующей формуле:
    ,
    гдеd– разность рангов,
    Высчитывается только для таблицы
    размером 2*2,

    ———————————————————————————————————————
    Коэффициент Юла

    Коэффициент Юла подходит, если
    рассматривается таблица 2*2, Т,е,
    определяется сила связи между 2-мя
    параметрами, каждый из которых принимает
    только 2 значения,

    На основании полученных коэффициентов
    можно сделать вывод, что связь между
    параметрами очень слабая положительная,
    т,е, освоение курса практически не
    зависит от типа школы,