Учебная работа № 4195. «Контрольная Математика. Вариант 2

Учебная работа № 4195. «Контрольная Математика. Вариант 2

Количество страниц учебной работы: 8
Содержание:
Содержание
Задание 1 3
Задание 2 3
Задание 3 4
Задание 4 4
Задание 5 5
Список литературы 8

Задание 1
Докажите тождественную истинность формулы ((???)?((???)?((???)??)))

Задание 3
Многие игроки думают, будто в рулетку можно выиграть, если, дождавшись длинной серии выпадений на красное, поставить на черное. Эффективна ли такая система?

Задание 4
Продукция доставляется на оптовый склад в упаковках по 20 штук. Чтобы сократить издержки на проверку качества продукции, из упаковки выбираются случайным образом и проверяются пять изделий. Если среди них оказывается более одного некачественного, то проверяется вся упаковка; в противном случае просто удаляются все найденные некачественные изделия. Предположим, что в упаковке четыре некачественных изделия. Найдите вероятность того, что такая упаковка избежит полной проверки качества.

Задание 5
Для выборки 1, 4, 3, 3, 1, 0, 0, 3, 0, 4, 4, 4, 4, 4, 5, 2, 3, 1, 1, 5, 2, 3, 3, 2, 0, 5, 3, 2, 3, 3, 2, 1, 3, 1, 2, 5, 0, 0, 4, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 2, 2, 2, 4, 5, 3, 2, 3, 0, 1, 1, 2, 3, 3, 3, 4, 2, 1, запишите эмпирический закон распределения и постройте многоугольник распределения. Найдите точечные оценки для математического ожидания, дисперсии и среднеквадратичного отклонения.

Стоимость данной учебной работы: 585 руб.Учебная работа № 4195.  "Контрольная Математика. Вариант 2

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    Найдём ранг основной
    матрицы системы с помощью элементарных
    преобразований:

    ~
    ~

    Таким образом,
    = 2
    Так как ранг системы
    меньше числа неизвестных, то система
    имеет ненулевые решения, Размерность
    пространства решений этой системы: n
    – r
    = 4 – 2 = 2
    Преобразованная
    система имеет вид:

    <=>
    <=>

    <=>

    Эти формулы дают
    общее решение, В векторном виде его
    можно записать следующим образом:

    =
    =
    =
    *
    +

    где
    ,
    − произвольные числа

    Вектор−столбцы:

    =
    и
    =
    образуют базис
    пространства решений данной системы,

    Задание 74,
    Даны два линейных
    преобразования, Средствами матричного
    исчисления найти преобразование,
    выражающее x1′′,
    x2′′,
    x3′′
    через x1,
    x2,
    x3

    Решение

    Первое линейное
    преобразование:

    = A
    *
    имеет матрицу А =

    Второе:

    = B
    *
    имеет матрицу В =
    (*)
    Тогда если в (*)
    вместо В и
    поставить соответствующие матрицы,
    получим:

    C
    = B
    * A
    , то есть

    C
    =
    *
    =

    Поэтому искомое
    линейное преобразование имеет вид:

    =
    *

    Задание 84,
    Найти собственные
    значения и собственные векторы линейного
    преобразования, заданного в некотором
    базисе матрицей,

    Составляем
    характеристическое уравнение матрицы:

    =
    = 0

    (5−λ)
    *
    + 7 *
    + 0 *
    = 0

    (5−λ)
    (1−λ)
    (−3−λ)
    + 7 (−3) (−3−λ)
    = 0 (**)
    (5−6λ+)
    (−3−λ)
    + 63 + 21λ
    = 0
    −15 +18λ
    − 3
    − 5λ
    + 6

    + 63 + 21λ
    = 0
    48 + 34λ
    + 3

    = 0 <=> (**) (λ
    – 8) (λ
    + 2) (λ
    + 3) = 0
    то есть
    = 8 ,
    = −3 ,
    = −2

    При
    = 8 система имеет вид:

    =>

    Выразим
    через :

    4 * (−7)
    + 6
    = 11
    −22
    = 11
    =>
    = −0,5

    Выразим
    через :

    12
    + 6*()
    = 11

    84
    − 18
    = 77
    66
    = 77
    =>
    = 1

    Таким образом,
    числу
    = 8 соответствует собственный вектор:

    =
    =
    =

    где
    − произвольное действительное число

    Аналогично для

    = −3

    <=>
    =
    = 0

    Таким образом,
    числу
    = −3 соответствует собственный вектор

    =
    =
    =

    Наконец для
    = −2 решаем систему:

    =>

    то есть вектор

    =
    =
    =

    Итак, матрица А
    имеет три собственных значения:
    = 8 ,
    = −3 ,
    = −2, Соответствующие им собственные
    векторы (с точностью до постоянного
    множителя) равны:

    =

    =

    =

    Задача 94,
    Привести к
    каноническому виду уравнение линии
    второго порядка, используя теорию
    квадратичных форм,

    Левая часть
    уравнения
    представляет собой квадратичную форму
    с матрицей:
    А =
    Решаем
    характеристическое уравнение:

    = 0 , то есть
    = 0
    <=> (5−λ)
    (3−λ)
    = 8

    − 8λ
    + 7 = 0

    = 1 ,
    = 7

    Найдём собственные
    векторы из системы уравнений

    при
    = 1 ,
    = 7

    Если
    = 1 , то:

    =>
    =

    Значит собственный
    вектор
    =
    для
    = 1

    Если
    = 7 , то:

    =>
    =

    значит собственный
    вектор
    =
    для
    = 7

    Нормируем собственные
    векторы, по правилу:

    =
    , получаем:

    =

    =

    Составляем матрицу
    перехода от старого базиса к новому:

    T
    =

    Выполняя
    преобразования:

    = T

    =
    *
    =
    =>
    x
    =
    +
    , y
    = +

    Подставим полученные
    x
    и y
    в исходное уравнение и полученное
    уравнение упростим:

    5
    +

    + 3
    = 14

    +
    + 22
    +
    = 14

    + 10
    + 10
    − 8
    − 4
    + 8
    + 6
    − 6
    + 3
    = 42

    + 21
    = 42 =>

    +
    = 1 – каноническое уравнение эллипса