Учебная работа № 3454. «Контрольная Математика. Вриант № 6 (9 задач)
Учебная работа № 3454. «Контрольная Математика. Вриант № 6 (9 задач)
Содержание:
«Математика
Вариант №6
1. В прямоугольном треугольнике катеты равны и см. Найти углы треугольника, гипотенузу и площадь.
2. Вершины треугольника Определить вид треугольника, найти его периметр.
3. Сила разложена по двум направлениям, одна из которых
Найти вторую составляющую. Сделать рисунок.
4. Найти экстремум функции 5. Найти угол наклона касательной к кривой если
6. Решить систему уравнений методом Крамера
7. Найти интегралы а) б) 8. Образующая конуса 24 см. Угол при вершине осевого сечения конуса равен Вычислить объем конуса.9. Вычислить работу силы , зная, что перемещение точки ее приложения изображается вектором »
Выдержка из похожей работы
уравнений в координатном виде
,
гдекоординаты векторав базисе,
и найдем,Определитель
найден выше:,,;Имеем:
,;,Значит,
,
Задачи 11–20Даны координаты вершин
пирамиды
,
Найти: 1) длину ребра;
2) угол между рёбрамии;
3) угол между ребром
и гранью
;
4) площадь грани
;
5) объём пирамиды; 6) уравнение
прямой
;
7) уравнение плоскости;
8) уравнение высоты, опущенной из
вершинына грань;
9) сделать чертёж,Решение1) Длина ребра
численно равна расстоянию между точкамии,
которое в декартовой системе координат
вычисляется по формуле
,
где
координаты точки,координаты точки,Таким образом, вычисляем:
,
2) Угол между ребрами
и
вычисляется по формуле
из скалярного произведения векторов
и
,Найдем
координаты векторов
и,=,=,Тогда
==,,
3) Угол между ребром
и плоскостью
– это угол между вектором
и его ортогональной проекцией
на грань
,
Вектор
перпендикулярен грани
,
что вытекает из определения векторного
произведения векторов
и
==,Тогда
===,
4) Площадь грани
находим, используя геометрический смысл
векторного произведения:
Тогда
=,
=
,
5) Объем пирамиды
численно равен одной шестой модуля
смешанного произведения векторов
,
,
,
которое находится по формуле