Учебная работа № /8118. «Контрольная Эконометрика, вариант 12
Учебная работа № /8118. «Контрольная Эконометрика, вариант 12
Содержание:
1. Решить игру аналитическим и геометрическим способами:
2. Решить задачу линейного программирования геометрическим способом:
3. Имеются по три пункта поставки и потребления однородного груза с данными возможностями и потребностями и матрицей тарифов доставки груза. Найти оптимальный план перевозки груза.
B1 B2 B3 ai
A1 4 6 8 250
A2 4 11 2 150
A3 7 4 5 100
bi 125 250 125
4. Предприятие выпускает три вида продукции по ценам за 1 единицу 6, 7, 4 у.е. соответственно. Производственные возможности предприятия характеризуются следующими данными:
суточный фонд рабочего времени оборудования — 80 ч.
суточный расход сырья — 85 т.
суточный расход электроэнергии — 75 кВт/ч.
интенсивность использования ресурсов при производстве различных видов продукции дана в таблице.
ресурсы Интенсивность использования ресурсов при
производстве 1 ед. продукции
I II III
Рабочее время оборудования, ч 2 3 4
Сырьё, т 1 2 1
Электроэнергия, кВт/ч 3 3 2
Определить оптимальный план выпуска продукции, обеспечивающий предприятию максимальный объём выручки.
Выдержка из похожей работы
Требуется:
1) Найти оценки параметров линейной регрессии на , Построить диаграмму рассеяния и нанести прямую регрессии на диаграмму рассеяния,
2) На уровне значимости проверить гипотезу о согласии линейной регрессии с результатами наблюдений,
3) С надежностью найти доверительные интервалы для параметров линейной регрессии,
регрессия производительность статистика эконометрический
1
2
3
4
5
6
7
8
9
10
11
12
13
14
64
59
65
71
73
80
36
34
40
44
45
51
60
58
42
44
45
47
49
52
24
28
32
34
35
37
38
41
Решение:
1) Для уравнения прямой регрессии по статистическим данным найдем оценки и ее параметров методом наименьших квадратов, Применим формулы:
, , где , ;
, , , , n =14
Вычисления организуем в форме следующей расчетной таблицы:
1
64
42
4096
1764
2688
2
59
44
3481
1936
2596
3
65
45
4225
2025
2925
4
71
47
5041
2209
3337
5
73
49
5329
2401
3577
6
80
52
6400
2704
4160
7
36
24
1296
576
864
8
34
28
1156
784
952
9
40
32
1600
1024
1280
10
44
34
1936
1156
1496
11
45
35
2025
1225
1575
12
51
37
2601
1369
1887
13
60
38
3600
1444
2280
14
58
41
3364
1681
2378
780
548
46150
22298
31995
/ n
55,7
39,1
3296,4
1592,7
2285,3
Далее вычисляем ковариации
;
;
;
и по указанным выше формулам находим
;
,
В результате получаем уравнение прямой регрессии
,
2) Проверим согласованность выбранной линейной регрессии с результатами наблюдений, Это выполняется как решение следующей задачи проверки статистической гипотезы,
На заданном уровне значимости выдвигается гипотеза об отсутствии линейной статистической связи, Для проверки выдвинутой гипотезы используется коэффициент детерминации и применяется статистика Фишера F,
В случае парной линейной регрессии коэффициент детерминации равен квадрату выборочного коэффициента корреляции Пирсона, т,е,
,
Статистика F выражается формулой
,
и при условии справедливости гипотезы имеет классическое распределение Фишера с и степенями свободы,
В соответствии с приведенными формулами вычисляем коэффициент детерминации и наблюдаемое значение статистики Фишера:
;
,
Критическое значение статистики Фишера находим по таблице квантилей распределения Фишера ([4]), исходя из равенства
,
где (порядок квантили), , В данном случае ,
Сравниваем между собой наблюдаемое и критическое значения статистики Фишера, Так как , то выдвинутая гипотеза решительно отвергается, что свидетельствует о согласии линейной регрессионной связи с результатами наблюдений,
3) Так как линейная регрессия согласуется со статистическими данными, найдем (с надежностью ) доверительные интервалы для параметров и линейной регрессии,
Применим известные формулы для доверительных интервалов:
; где
,
— квантиль распределения Стьюдента порядка
с степенями свободы,
;
, где
,
В данном случае ;
;
;
,
Применив приведенные выше формулы для доверительных интервалов, окончательно получим
;
;
следовательно,
;
,
Задача 2
Исследуется зависимость производительности труда y (условные единицы) от уровня механизации работ х1 (%) и среднего возраста работников х2 (лет) по данным 14 промышленных предприятий ( — порядковый номер предприятия), Статистические данные приведены в таблице,
Требуется:
1) Вычислить ковариации и составить ковариационную матрицу,
2) Найти оценки параметров множественной линейной регрессии и составить уравнение плоскости регрессии ,
3) На уровне значимости проверить гипотезу о согласии линейной множественной регрессии с результатом наблюдений,
4) С надежностью найти доверительные интервалы для параметров множественной линейной регрессии»