Учебная работа № /7655. «Контрольная Высшая математика, 7 задач

Учебная работа № /7655. «Контрольная Высшая математика, 7 задач

Количество страниц учебной работы: 15
Содержание:
1 – 10. Даны векторы (а1; а2; а3), (b1; b2; b3), (c1; c2; c3) и (d1; d2; d3) в некотором базисе. Показать, что векторы образуют базис и найти координаты вектора d в этом базисе.
10. (6; 3; 1),
(–1; 3; 4),
(2; –1; 9),
(–2; –10; 0).
11 – 20. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1) длину ребра А1А2; 2) угол между ребрами А1А2 и А1А4; 3) угол между ребром А1А4 и гранью А1А2А3; 4) площадь грани А1А2А3; 5) объем пирамиды; 6) уравнение прямой А1А2; 7) уравнение плоскости А1А2А3; 8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3. Сделать чертеж.
20. А1 (2; 1; –4), А2(1; –2; 3), А3(1; –2; –3), А4(5; –2; 1).
30. Даны уравнения двух сторон прямоугольника 5х + 2у –7= 0,
5х + 2у – 36 = 0 и уравнение его диагонали 3х + 7у – 10 = 0. Составить уравнения остальных сторон этого прямоугольника.
31 – 40. Привести уравнение кривой второго порядка к каноническому виду, построить график кривой.
40. 4×2 – 3у2 – 8x – 6у – 11 = 0.
51 – 60. Дана система линейных уравнений
Доказать ее совместность и решить тремя способами: 1) по формулам Крамера; 2) методом Гаусса; 3) средствами матричного исчисления. Проверить правильность вычисления обратной матрицы, используя матричное умножение.
60.
61 – 70. Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей А.
70.
71 – 80. Дано комплексное число z. Требуется: 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3 + z = 0.
80.

Стоимость данной учебной работы: 585 руб.Учебная работа № /7655.  "Контрольная Высшая математика, 7 задач

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


    Выдержка из похожей работы

    1

    2

    1

    5

    1

    2

    1

    5

    1

    2

    1

    5

    1

    -1

    -2

    -1

    ~

    0

    -3

    -3

    -6

    ~

    0

    -3

    -3

    -6

    2

    1

    1

    4

    0

    -3

    -1

    -6

    0

    0

    2

    0

    2z = 0, z = 0; -3y -3•0 = -6, y = 2; x + 2•2 + 1•0 = 5, x = 1,
    Решение системы {1;2;0}
    По формулам Крамера:
    — определитель матрицы, составленной из коэффициентов при неизвестных,
    x, y, z — получаются из путем замены столбца коэффициентов при соответствующем неизвестном на столбец свободных членов,

    1

    2

    1

    Д=

    1

    -1

    -2

    = -1+1-8+2-2+2= -6

    2

    1

    1

    5

    2

    1

    Дx=

    -1

    -1

    -2

    = -5-1-16+4+2+10 = -6

    4

    1

    1

    X=Дx/Д= -6/(-6) = 1

    1

    5

    1

    Дy=

    1

    -1

    -2

    = -1+4-20+2+8-5 = -12

    2

    4

    1

    Y=Дy/Д= -12/(-6) =2
    Z=Дz/Д= 0/(-6) = 0

    1

    2

    5

    Дя=

    1

    -1

    -1

    = -4+5-4+10+1-8 = 0

    2

    1

    4

    Решение системы {1;2;0}
    Задача 30
    На плоскости задан треугольник координатами своих вершин А(2,3), В(-3,1), С(-4,5)
    Найти:
    — длину стороны АВ
    — уравнение стороны АВ
    — уравнение медианы АD
    — уравнение высоты СЕ
    — уравнение прямой, проходящей через вершину С, параллельно стороне АВ
    — внутренний угол при вершине А
    — площадь треугольника АВС
    — координаты точки Е
    — сделать чертеж
    Решение:
    1, Длина стороны АВ:
    АВ= 5,385
    2, Уравнение прямой, проходящей через две заданные точки:
    ; ;
    у = — уравнение прямой АВ, угловой коэффициент k—AB= 2/5
    3, Медиана АD делит сторону ВС, противоположную вершине А, пополам,
    Координаты середины ВС:
    х4 = (х2 + х3)/2 = 3,5, у4 = (у2 + у3)/2 = 3
    D (-3,5;3)
    Уравнение прямой, проходящей через две заданные точки, А и D:
    ; -5,5у = -16,5
    у = 3- уравнение прямой АD
    3, Высота СЕ перпендикулярна АВ, а значит угловой коэффициент высоты СЕ равен
    Уравнение прямой, проходящей через заданную точку (х3ёу3) и имеющей угловой коэффициент kСЕ, имеет вид:
    у — у3 = kСЕ (х — х3); у — 5 = -2,5(х+4)
    у = -2,5х -5 — уравнение высоты СЕ,
    5, Если прямые параллельны, то их угловые коэффициенты равны, Уравнение прямой, проходящей через точку С (х3ёу3) и имеющей угловой коэффициент kАВ, имеет вид:
    у — у3 = kАВ (х — х3); у — 5 = х +,
    у = х +, — уравнение прямой, параллельной АВ,
    6, Косинус внутреннего угла при вершине А вычисляется по формуле:
    , где
    — длины сторон АВ и АС соответственно,
    ,
    А = arc cos 0,7643 = 40о9′
    7, Площадь треугольника АВС вычисляется по формуле:
    S = Ѕ(x2 — x1)(y3 — y1) — (x3 — x1)(y-2 — y1);
    S= Ѕ (-5)·2 — (-2) ·(-6) = 22/2 = 11 кв,ед,
    8, Координаты точки Е находим, решая совместно уравнения АВ и СЕ, т,к точка Е принадлежит им обоим:
    у = -2,5х -5
    у =
    0,4х +2,2 = -2,5х -5 2,9х = -7,2 х = -2,5
    у = 6,25 — 5 = 1,25 Е(-2,5;1,25)
    Задача 40
    Привести уравнение кривой второго порядка к каноническому виду, Построить кривую,
    у2 + 2x — 2y -1 = 0
    Решение:
    Выделяем полные квадраты:
    у2- 2у +1 + 2х- 2 = 0
    (у — 1)2 = -2(х — 1)
    (х — 1) =-1/2(у — 1)2 — это уравнение параболы с центром в точке (1,1), ось симметрии — прямая
    у = 1, ветви параболы направлены влево,

    Задача 50
    Вычислить пределы,
    1)
    2)
    3)
    4)
    так как -первый замечательный предел
    5) , (a0)
    Обозначим х-а = t, Если х>а, то t>0, х = t+a, ln x-ln a =
    где — второй замечательный предел,
    Задача 60
    Найти производные функций:
    1) y =
    y =
    2) у =
    3) y =
    y =
    4) y = ctg(excosx);
    y=
    Задача 70
    Провести полное исследование функции и построить ее график,
    у = ;
    Решение:

    1, Область определения функции: х (-; +),
    2, Поведение функции на границах области определения:

    3, у= х3 — х2 = х2(x-1); у= 0, если х1 = 0, х2 = 1;
    При х (-; 0), у 0, функция убывает,
    При х (0;1), у 0, функция убывает»