Учебная работа № /7561. «Контрольная Математика m=5 n=6 , N = 25 k= 23

Учебная работа № /7561. «Контрольная Математика m=5 n=6 , N = 25 k= 23

Количество страниц учебной работы: 8
Содержание:
Контрольная работа № 2
m=5 n=6 , N = 25 k= 23
Последняя цифра — 1
1. В аптеке работают 4 мужчины и 12 женщин. По табельным номерам наудачу отобрано 8 человек. Какова вероятность того, что среди отобранных лиц окажутся 3 мужчины?
2. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной дискретной величины X, заданной законом распределения. Нарисовать многоугольник распределения.
11.
xi 0,5 1,0 1,7 2,0 2,4 2,8
pi 0,1 0,15 0,2 0,22 0,18 0,15
Задание по математической статистике.
Дана выборка Х = {x1, x2, …, xn}.
Объем выборки n=100-[(N+k)/3] = 100-[(25+23)/3] = 84.
Составить интервальный вариационный ряд распределения и построить полигон и гистограмму для следующих данных:

11,70 9,03 13,70 12,31 6,68 3,3 8,06 12,90
7,35 7,76 12,30 5,91 6,23 12,37 11,50 10,99
11,35 13,70 11,11 9,74 12,33 14,75 6,86 12,90
13,90 9,70 12,00 13,56 6,67 12,75 15,33 12,23
11,00 15,30 9,50 11,99 14,40 10,36 13,00 13,13
9,75 10,79 14,10 12,05 11,25 15,67 14,67 15,95
15,21 16,00 12,41 9,02 16,20 9,32 8,81 12,41
13,57 10,32 13,85 13,60 16,60 15,05 12,97 13,60
9,21 19,30 12,80 17,60 10,81 16,95 9,85 13,20
14,90 15,95 13,40 16,80 6,96 12,03 12,00 11,50
12,90 7,39 16,10 9,35

Стоимость данной учебной работы: 585 руб.Учебная работа № /7561.  "Контрольная Математика m=5 n=6 , N = 25 k= 23

Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

Укажите № работы и вариант


Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


Введите символы с изображения:

captcha

Выдержка из похожей работы


Вероятности промахов равны соответственно: q1 = 0,1, q2 = 0,2, q3 = 0,3,
а) Р(А) = р1р2р3 = 0,9•0,8•0,7 = 0,504,
б) Р(В) = p1q2q3 + q1p2q3 + q1q2p3 = 0,9•0,2•0,3 + 0,1•0,8•0,3 + 0,1•0,2•0,7 = 0,092,
в) Событие — все три стрелка промахиваются, Тогда
Р(С) = 1 — Р() = 1 — 0,1•0,2•0,3 = 1 — 0,006 = 0,994,
№ 11
Вероятность наступления события в каждом из одинаковых независимых испытаний равна 0,02, Найти вероятность того, что в 150 испытаниях событие наступит ровно 5 раз
У нас n достаточно велику, р малу, л = np = 150 • 0,02 = 3 < 9, k = 5, Справедливо равенство Пуассона: , Таким образом, № 21 По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение у(Х), хі 1 2 3 4 5 рі 0,05 0,18 0,23 0,41 0,13 Последовательно получаем: 5 М(Х) = ? хірі = 0,05 + 2•0,18 + 3•0,23 + 4•0,41 + 5•0,13 = 3,39, i=1 5 D(X) = ? xiІpi - MІ = 0,05 + 2І•0,18 + 3І•0,23 + 4І•0,41 + 5І•0,13 - 3,39І = i=1 1,1579, у(Х) = vD(X) = v1,1579 = 1,076, № 31 Случайная величина Х задана интегральной функцией а) дифференциальную функцию f(x) (плотность вероятности); б) математическое ожидание и дисперсию величины х; в) вероятность того, что X примет значение, принадлежащее интервалу ; г) построить графики функций F(x) и f(x), Последовательно получаем: а) ; в) Р(a < x < b) = F(b) - F(a) P= F(1) - F= - 0 = , Графики функций поданы далее, № 41 Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (б; в) если известны математическое ожидание а и среднее квадратическое отклонение у, Данные: б = 2; в = 13; а = 10; у = 4, Используем формулу Р(б < x < в) = Имеем: Р(2 < x < 13) == Ф- Ф(-2), Поскольку функция Лапласа есть нечетная, можем записать: Ф- Ф(-2) = Ф+ Ф(2) = 0,2734 + 0,4772 = 0,7506, № 51 По данному статистическому распределению выборки хі 4 5,8 7,6 9,4 11,2 13 14,8 16,6 mі 5 8 12 25 30 20 18 6 Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение, Для решения задачи введём условную переменную , где С - одно из значений хі, как правило, соответствующее наибольшему значению mі , а h - это шаг (у нас h = 1,8), Пусть С = 11,2, Тогда , Заполним таблицу: xi mi xiґ ximi (xiґ)Іmi 4 5 - 4 - 20 80 5,8 8 - 3 - 24 72 7,6 12 - 2 - 24 48 9,4 25 - 1 - 25 25 11,2 30 0 0 0 13 20 1 20 20 14,8 18 2 36 72 16,6 6 3 18 54 ? = 124 ? = - 19 ? = 371 Используя таблицу, найдём ; D(xґ) = ?(xiґ)Іmi - (xiґ)І = - (- 0,1532)І = 2,9685, Теперь перейдем к фактическим значениям х и D(x): _ x = xґh + C = - 0,1532•1,8 + 11,2 = 10,9242; D(x) = D(xґ)•hІ = 2,9685•1,8І = 9,6178; у(x) = vD(x) = v9,6178 = 3,1013, № 61 По данной корреляционной таблице найти выборочное уравнение регрессии, у х 6 9 12 15 18 21 ny 5 4 2 6 15 5 23 28 25 18 44 5 67 35 1 8 4 13 45 4 2 6 nx 4 7 42 52 13 2 n = 120 Для упрощения расчетов введем условные переменные u = , v = , Составим таблицу: v u - 3 - 2 - 1 0 1 2 nv nuvuv - 2 4 6 2 4 6 32 - 1 5 2 23 1 28 33 0 18 0 44 0 5 0 67 0 1 1 -1 8 0 4 1 13 3 2 4 2 2 4 6 16 nu 4 7 42 52 13 2 n = 120 ? = 84 Последовательно получаем: ; ; ; ; уuІ = - (u)І = 1,058 - (- 0,425)І = 0,878; уu = v0,878 = 0,937; уvІ = - (v)І = 0,742 - (- 0,125)І = 0,726; уv = v0,726 = 0,8521; По таблице, приведённой выше, получаем ?nuvuv = 84, Находим выборочный коэффициент корреляции: Далее последовательно находим: x = u•h1 + C1 = - 0,425•3 + 15 = 13,725; y = v•h2 + C2 = - 0,125•10 + 25 = 23,75; уx = уu•h1 = 0,937•3 = 2,811; уy = уv•h2 = 0,8521•10 = 8,521, Уравнение регрессии в общем виде: Таким образом, упрощая, окончательно получим искомое уравнение регрессии: Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х, 1) при х = 12 по таблице имеем по уравнению: ух=12 = 2,457•12 - 9,968 = 19,516; е1 = 19,762 - 19,516 = 0,246; 2) при х = 18 по таблице имеем по уравнению: ух=18 = 2,457•18 - 9,968 = 34,258; е2 = 34,258 - 34,231 = 0,027"