Учебная работа № /7551. «Контрольная Теория вероятностей. Контрольная работа №3

Учебная работа № /7551. «Контрольная Теория вероятностей. Контрольная работа №3

Количество страниц учебной работы: 7
Содержание:
Вариант 24
1. Собрание, на котором присутствуют 20 человек, в том числе 8 женщин, выбирают делегацию из 5 человек. Найти вероятность того, что в делегацию войдут 3 женщины, считая, что каждый из присутствующих может быть избран с одинаковой вероятностью.

2. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочнике соответственно равны 0,5, 0,7 и 0,9. Найти вероятность того, что хотя бы в одном справочнике этой формулы нет.
3. Имеются две урны: в первой находится 4 красных и 3 синих шара, во второй – 5 красных и 2 синих шара. Из первой урны во вторую случайным образом перекладывают два шара. После этого из второй урны берут четыре шара. Найти вероятность того, что синих и красных шаров будет одинаковое число.
4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа.
а) Вероятность появления некоторого события в каждом из 5 независимых опытов равна 0,25. Определить вероятность появления этого события по крайней мере 2 раза.
б) Всхожесть семян данного сорта растений составляет 80%. Найти вероятность того, что из 700 посаженых семян число проросших будет: 1) равно 550, 2) заключено между 545 и 585.
5. Дан перечень возможных значений дискретной величины Х: x1=–1, x2=3, x3=5, а также даны математическое ожидание этой величины M[X]=0,8 и ее квадрата M[X2]=5,8. Найти закон распределения случайной величины Х.
6. Непрерывная случайная величина Х задана функцией распределения

Найти: а) параметр k; б) математическое ожидание; в) дисперсию.
7. Известны математическое ожидание а=10 и среднее квадратичное отклонение =3 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (5, 9); б) отклонения этой величины от математического ожидания не более, чем на .
8. Из генеральной совокупности извлечена выборка, которая представлена в виде интервального вариационного ряда. а) Предполагая, что генеральная совокупность имеет нормальное распределение, построить доверительный интервал для математического ожидания с доверительной вероятностью =0,95. б) Вычислить коэффициенты асимметрии и эксцесса, используя упрощенный метод вычислений, и сделать соответствующие предположения о виде функции распределения генеральной совокупности. в) Используя критерий Пирсона, проверить гипотезу о нормальности распределения генеральной совокупности при уровне значимости =0,05.
x 20-28 28-36 36-44 44-52 52-60 60-68 68-76
n 12 21 29 37 27 17 11
9. Методом наименьших квадратов подобрать функцию по табличным данным и сделать чертеж.
x 0 3 6 9 12 15 18
y 3,3 5,2 6,9 9,5 12,7 15,1 21,6

Стоимость данной учебной работы: 585 руб.Учебная работа № /7551.  "Контрольная Теория вероятностей. Контрольная работа №3

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


    Выдержка из похожей работы

    Найти вероятность того, что среди них одно бракованное,
    Решение:
    Число N всех равновероятных исходов испытания равно числу способов, которыми можно из 10 деталей вынуть три, т,е, числу сочетаний из 10 элементов по 3:
    По условию задачи из трех извлеченных изделий одно бракованное, а два годные, Таким образом mA:
    Найдем вероятность события, при котором из 3 извлеченных наугад деталей одна окажется бракованной:
    Ответ: вероятность события, при котором из 3 извлеченных наугад деталей одна окажется бракованной равна 0,5
    Задача № 2
    Условие:
    Известны вероятности независимых событий А, В и С:

    Р (А) = 0,5; Р (В) = 0,4; Р (С) = 0,6,

    Определить вероятность того, что а) произойдет по крайней мере одно из этих событий, б) произойдет не более 2 событий,
    Решение:
    а) Для того чтобы найти вероятность того, что произойдет хотя бы 1 событие, найдем вероятность того, что ни одно событие не произойдет (обозначим эту вероятность P0), Так как события независимы по условию, вероятность P0 равна произведению вероятностей того, что не произойдет каждое отдельное событие,
    Таким образом, вероятность того, что не произойдет:
    событие А: А0 = 1 — 0,5 = 0,5
    событие В: В0 = 1 — 0,4 = 0,6
    событие С: С0 = 1 — 0,6 — 0,4
    Воспользуемся правилом умножения вероятностей и получим вероятность того, что ни одно событие не произойдет:
    P0= А0*В0*С0 = 0,5*0,6*0,4 = 0,12
    Ситуация, при которой не произойдет ни одно событие, и ситуация, при которой произойдет хотя бы одно событие, образуют полную систему событий, Сумма вероятностей этих событий равна единице, Поэтому искомая вероятность P удовлетворяет уравнению:
    P + P0 = 1, откуда следует, что
    P = 1 — P0 = 1 — 0,12 = 0,88,
    б) Для того, чтобы найти вероятность того, что произойдет не более 2 событий, найдем вероятность того, что произойдут все три события, и обозначим как Р1:
    Р1 = А*В*С = 0,5*0,4,*0,6 = 0,12
    Ситуация, при которой произойдут все 3 события, и ситуация, при которой произойдет не более 2 событий (от 0 до 2), составляют полную систему событий, Сумма вероятностей этих событий равна единице, Поэтому искомая вероятность P удовлетворяет уравнению:
    P + Р1 = 1, откуда следует, что
    P = 1 — Р1 = 1 — 0,12 = 0,88,
    Ответ:
    а) вероятность того, что произойдет по крайней мере одно событие, равна 0,88
    б) вероятность того, что произойдет не более двух событий, равна 0,88
    Задача № 3
    Условие:
    Вероятности попадания в цель: первого стрелка — 0,6; второго — 0,7; третьего — 0,8, Найти вероятность хотя бы одного попадания в цель при одновременном выстреле всех трех,
    Решение:
    Для того чтобы найти вероятность попадания в цель хотя бы 1 стрелка, найдем вероятность того, что ни один из стрелков не попадет в цель (обозначим эту вероятность через P0), Так как попадания различных стрелков в цель следует считать независимыми событиями, вероятность P0 равна произведению вероятностей того, что промажет каждый из стрелков,
    Событие, состоящее в том, что некоторый стрелок попадет в цель, и событие, состоящее в том, что он промажет, составляют полную систему событий, Сумма вероятностей двух этих событии равна единице,
    Таким образом, вероятность того, что
    А) промажет 1 стрелок равна: 1 — 0,6 = 0,4
    Б) промажет 2 стрелок равна: 1 — 0,7 = 0,3
    В) промажет 3 стрелок равна: 1 — 0,8 = 0,2
    Воспользуемся правилом умножения вероятностей и получим вероятность того, что промажут все трое стрелков:
    P0= 0,4*0,3*0,2 = 0,024
    Событие, состоящее в том, что не попадет в цель ни один из стрелков, и событие, состоящее в том, что попадет хотя бы один, образуют полную систему событий, Сумма вероятностей этих событий равна единице, Поэтому искомая вероятность P удовлетворяет уравнению:
    P + P0 = 1, откуда следует, что
    P = 1 — P0 = 1 — 0,024 = 0,976
    Ответ: вероятность попадания в цель хотя бы одного стрелка при одновременном выстреле всех трех равна 0,976 (или 97,6%)
    Задача № 4
    Условие:
    Известно, что 80% продукции стандартно, Упрощенный контроль признает годной стандартную продукцию с вероятностью 0,9 и нестандартную с вероятностью 0,3, Найти вероятность того, что признанное годным изделие — стандартно,
    Решение:
    1) Найдем вероятность того, что стандартная продукция будет признана годной:
    Р1 = 0,8*0,9 = 0,72 (72% продукции)
    2) Найдем вероятность того, что нестандартная продукция будет признана годной:
    Р2 = 0,2*0,3 = 0,06 (6% продукции)
    3) Таким образом, упрощенный контроль признает годной Р1 + Р2 = 0,82 (82% продукции)
    4) Найдем вероятность того, что признанное годным изделие — стандартно:
    0,8*0,82 = 0,656
    Ответ: вероятность того, что признанное годным изделие — стандартно, равна 0,656,
    Задача № 5
    Условие:
    Имеется 4 радиолокатора, Вероятность обнаружить цель для первого — 0,86; для второго — 0,9; для третьего — 0,92; для четвертого — 0,95, Включен один из них, Какова вероятность обнаружить цель?
    Решение:
    Обозначим через А событие — цель обнаружена, а возможные события (гипотезы) обнаружения цели 1-м, 2-м, 3-м или 4-м локаторами — через, соответственно, В1, В2, В3 и В4,
    По условию задачи включен один из четырех локаторов, следовательно, вероятность обнаружения цели:
    Р (В1) = Р (В2) = Р (В3) = Р (В4) = 1\4″