Учебная работа № 6805. «Контрольная Методы оптимальных решений (9 вариант)

Учебная работа № 6805. «Контрольная Методы оптимальных решений (9 вариант)

Количество страниц учебной работы: 11
Содержание:
«Задача №1
Для производства двух видов продукции А и В используются материалы трех сортов. На изготовление единицы изделия А (В) расходуется 52 (97) кг материала 1-го copтa, 67 (82) кг материала 2-го сорта, 217 (52) кг материала 3-го сорта. Всего имеется 680, 750, 1500 кг материалов 1-го, 2-го и 3-го сорта. Реализация единицы продукции А (В) приносит прибыль 4 (5) рублей. При каком объеме производства прибыль будет максимальна? Задачу решить геометрически.
Необходимо:
1. Составить систему математических зависимостей (неравенств) и целевую функцию.
2. Изобразить геометрическую интерпретацию задачи.
3. Найти оптимальное решение.
4. Провести аналитическую проверку.
5. Определить существенные и несущественные ресурсы и их избытки.
6. Определить значение целевой функции.
7. Составить двойственную задачу по отношению к исходной.
8. Вычислить объективно-обусловленные оценки ресурсов (найти решение двойственной задачи, составив соотношение устойчивости).
Задача № 2
Есть три поставщика с мощностями 20, 30 и 25 и пять потребителей (их спрос 21, 15, 12, 14, 13 соответственно). Стоимость доставки единицы груза от каждого поставщика к каждому потребителю задается матрицей: . Найти оптимальный план поставок и стоимость перевозок по данному плану.
Задача 3
Совет директоров фирмы рассматривает предложения по наращиванию производственных мощностей для увеличения выпуска однородной продукции на четырех предприятиях, принадлежащих фирме.
Для модернизации предприятий совет директоров инвестирует средства в объеме 250 млн. р. с дискретностью 50 млн. р. Прирост выпуска продукции зависит от выделенной суммы, его назначения представлены предприятиями и содержаться в таблице. Найти распределение инвестиций между предприятиями, обеспечивающее фирме максимальный прирост выпуска продукции, причем на одно предприятие можно осуществить только одну инвестицию
Задача №4
Годовой спрос 800 единиц, стоимость подачи заказа 75 рублей/заказ, закупочная цена 65 рублей/единицу, годовая стоимость хранения одной единицы составляет 25% ее цены. Время доставки 6 дней. Найти оптимальный размер заказа. Можно получить скидку 2% у поставщиков, если размер заказа будет не меньше 100 единиц. Стоит ли воспользоваться скидкой? Определить оптимальный размер заказа и точку восстановления запаса.
»

Стоимость данной учебной работы: 585 руб.Учебная работа № 6805.  "Контрольная Методы оптимальных решений (9 вариант)
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    На трёх базах А1,А2
    ,А3находится однородный
    груз в количествеа1,а2,а3, Этот груз необходимо
    развести пяти потребителямB1,B2,B3,B4,B5,
    потребности которых в данном грузе
    составляютb1,b2,b3,b4,b5соответственно,
    Стоимость перевозок пропорциональна
    расстоянию и количеству перевозимого
    груза, Матрица тарифовcij
    (тыс,руб,/т,) и значенияа1,а2 ,а3;b1,b2,b3,b4,b5приведены ниже:

    а1 = 200т;
    а2 = 250т;
    а3 = 250т;

    b1 = 80т;
    b2 = 260т;
    b3 = 100т;
    b4 = 140т;b5
    = 120т;

    Требуется спланировать
    для транспортной задачи (ТЗ)
    первоначальные планы перевозокxijдвумя способами (метод северо-западного
    угла, метод минимальной стоимости) и
    определить для полученных планов
    значения целевой функции,

    4, Методом потенциалов
    провести 2 шага улучшения первоначального
    плана ТЗ
    из задания 3, полученного по методу
    «северо-западного» угла, Записать
    полученное решение и вычислить для
    него значение целевой функции,Контрольная работа по методам оптимальных решений Вариант 2,
    1, Построить допустимую область для
    заданной системы линейных неравенств
    и найти координаты угловых вершин
    полученной области

    2, Найти графическим способом наибольшее
    и наименьшее значение целевой функции
    zпри заданных условиях
    z=-2x+y

    max (min)
    при условии
    ( y-x

    1, y+x

    3, y

    1, x

    3)

    3, На трёх базах А1,А2
    ,А3находится однородный
    груз в количествеа1,а2,а3, Этот груз необходимо
    развести пяти потребителямB1,B2,B3,B4,B5,
    потребности которых в данном грузе
    составляютb1,b2,b3,b4,b5соответственно,
    Стоимость перевозок пропорциональна
    расстоянию и количеству перевозимого
    груза, Матрица тарифовcij
    (тыс,руб,/т