Учебная работа № 6560. «Контрольная Высшая математика, вариант 2

Учебная работа № 6560. «Контрольная Высшая математика, вариант 2

Количество страниц учебной работы: 9
Содержание:
Задание 1.
В магазин поступило 30 холодильников. Пять из них с дефектами. Покупатель выбирает случайным образом один из них. Найти вероятность того, что он будет
а) с дефектом
б) без дефекта.
Задание 2.
Из 100 изготовленных деталей 10 оказались нестандартными. Для проверки отобрали 5 деталей. Какова вероятность, что две из них нестандартны.
Задание 3.
Предприятие обеспечивает регулярный выпуск продукции при безотказной поставке комплектующих от двух смежников. Вероятность отказа в поставке от первого из смежников – 0.05, от второго – 0.08. Найти вероятность сбоя в работе предприятия.
Задание 4.
На предприятии работают две бригады рабочих: первая производит три четверти всей продукции с 4% браком, вторая – четверть всей продукции предприятия с процентом брака 6%. Найти вероятность того, что наугад взятое изделие
а) окажется бракованным
б) брак допущен второй бригадой.
Задание 5.
Всхожесть семян данного растения равна 90%. Найти вероятность того, что из четырех посеянных семян взойдут:
а) ровно три,
б) не менее 3.
Задание 6.
Баскетболист делает три штрафных броска. Вероятность попадания при каждом броске равна 0.7. Постройте ряд распределения числа попаданий мяча в корзину. Запишите результат в таблицу распределения. Сделайте вывод о наиболее вероятном исходе этих штрафных бросков.
Задание 7.
Ряд распределения дискретной случайной величины имеет вид: …
Запишите функцию распределения и постройте ее график.
Задание 8.
Для ряда распределения из задания 7 найдите математическое ожидание, дисперсию и среднее квадратическое отклонение величины х.
Задание 9.
Даны законы распределения двух независимых случайных величин. Найти математические ожидания и дисперсии величин А=5х+3 и В=2х+3y.

Стоимость данной учебной работы: 150 руб.Учебная работа № 6560.  "Контрольная Высшая математика, вариант 2
Форма заказа готовой работы

Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

Укажите № работы и вариант


Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


Введите символы с изображения:

captcha

Выдержка из похожей работы

Найдём ранг основной
матрицы системы с помощью элементарных
преобразований:

~
~

Таким образом,
= 2
Так как ранг системы
меньше числа неизвестных, то система
имеет ненулевые решения, Размерность
пространства решений этой системы: n
– r
= 4 – 2 = 2
Преобразованная
система имеет вид:

<=>
<=>

<=>

Эти формулы дают
общее решение, В векторном виде его
можно записать следующим образом:

=
=
=
*
+

где
,
− произвольные числа

Вектор−столбцы:

=
и
=
образуют базис
пространства решений данной системы,

Задание 74,
Даны два линейных
преобразования, Средствами матричного
исчисления найти преобразование,
выражающее x1′′,
x2′′,
x3′′
через x1,
x2,
x3

Решение

Первое линейное
преобразование:

= A
*
имеет матрицу А =

Второе:

= B
*
имеет матрицу В =
(*)
Тогда если в (*)
вместо В и
поставить соответствующие матрицы,
получим:

C
= B
* A
, то есть

C
=
*
=

Поэтому искомое
линейное преобразование имеет вид:

=
*

Задание 84,
Найти собственные
значения и собственные векторы линейного
преобразования, заданного в некотором
базисе матрицей,

Составляем
характеристическое уравнение матрицы:

=
= 0

(5−λ)
*
+ 7 *
+ 0 *
= 0

(5−λ)
(1−λ)
(−3−λ)
+ 7 (−3) (−3−λ)
= 0 (**)
(5−6λ+)
(−3−λ)
+ 63 + 21λ
= 0
−15 +18λ
− 3
− 5λ
+ 6

+ 63 + 21λ
= 0
48 + 34λ
+ 3

= 0 <=> (**) (λ
– 8) (λ
+ 2) (λ
+ 3) = 0
то есть
= 8 ,
= −3 ,
= −2

При
= 8 система имеет вид:

=>

Выразим
через :

4 * (−7)
+ 6
= 11
−22
= 11
=>
= −0,5

Выразим
через :

12
+ 6*()
= 11

84
− 18
= 77
66
= 77
=>
= 1

Таким образом,
числу
= 8 соответствует собственный вектор:

=
=
=

где
− произвольное действительное число

Аналогично для

= −3

<=>
=
= 0

Таким образом,
числу
= −3 соответствует собственный вектор

=
=
=

Наконец для
= −2 решаем систему:

=>

то есть вектор

=
=
=

Итак, матрица А
имеет три собственных значения:
= 8 ,
= −3 ,
= −2, Соответствующие им собственные
векторы (с точностью до постоянного
множителя) равны:

=

=

=

Задача 94,
Привести к
каноническому виду уравнение линии
второго порядка, используя теорию
квадратичных форм,

Левая часть
уравнения
представляет собой квадратичную форму
с матрицей:
А =
Решаем
характеристическое уравнение:

= 0 , то есть
= 0
<=> (5−λ)
(3−λ)
= 8

− 8λ
+ 7 = 0

= 1 ,
= 7

Найдём собственные
векторы из системы уравнений

при
= 1 ,
= 7

Если
= 1 , то:

=>
=

Значит собственный
вектор
=
для
= 1

Если
= 7 , то:

=>
=

значит собственный
вектор
=
для
= 7

Нормируем собственные
векторы, по правилу:

=
, получаем:

=

=

Составляем матрицу
перехода от старого базиса к новому:

T
=

Выполняя
преобразования:

= T

=
*
=
=>
x
=
+
, y
= +

Подставим полученные
x
и y
в исходное уравнение и полученное
уравнение упростим:

5
+

+ 3
= 14

+
+ 22
+
= 14

+ 10
+ 10
− 8
− 4
+ 8
+ 6
− 6
+ 3
= 42

+ 21
= 42 =>

+
= 1 – каноническое уравнение эллипса

Добавить комментарий

Ваш e-mail не будет опубликован.