Учебная работа № 6410. «Контрольная Теория вероятности. Задачи 3-6
Учебная работа № 6410. «Контрольная Теория вероятности. Задачи 3-6
Содержание:
«Задача №3
Из N частных банков, работающих в городе, нарушения в уплате налогов имеют место в М банках. Налоговая инспекция проводит проверку трех банков, выбирая их из N банков случайным образом. Выбранные банки проверяются независимо один от другого. Допущенные в проверяемом банке нарушения могут быть выявлены инспекцией с вероятностью p. Какова вероятность того, что в ходе проверки будет установлен факт наличия среди частных банков города таких банков, которые допускают нарушения в уплате налогов?
№
задач N M P
18 22 10 0,8
Задание №4
Предприниматель может получить кредиты в банках: в первом — L млн. руб. с вероятностью , во втором — k млн. руб. вероятностью , в третьем — r млн. руб. с вероятностью . Составить ряд распределения случайной величины Х — возможной суммы кредитов и найти ее числовые характеристики, если банки работают независимо друг от друга. Значения L, k, r, m взять из таблицы согласно номеру задачи.
№ задач L к r m
18 20 10 5 3
Задание №5.
Случайная величина Х — годовой доход наугад взятого лица, облагаемого налогом. Ее плотность распределения имеет вид:
f(х) =
где a — неизвестный параметр, а величины b и m заданы (см. в приведенной ниже таблице свой вариант задачи).
Требуется:
• определить значение параметра ;
• найти функцию распределения F(х);
• определить математическое ожидание и среднее квадратическое отклонение;
• определить размер годового дохода хl, не ниже которого с вероятностью p окажется годовой доход случайно выбранного налогоплательщика;
• построить графики функций F(х) и f(х).
Таблица
№ задач b m р
18 4 2,3 0,6
Задание №6
Выборочная проверка размеров дневной выручки оптовой базы реализации товаров по 100 рабочим дням дала следующие результаты.
i 1 2 3 4 5 6 7 8
Ji 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40
ni n1 n2 n3 n4 n5 n6 n7 n8
Здесь:
i – номер интервала наблюдаемых значений дневной выручки;
Ji – границы i-го интервала в условных денежных единицах;
ni – число рабочих дней, когда дневная выручка оказалась в границах i-го интервала.
При этом очевидно, что .
Требуется:
1.Построить гистограмму частот;
2. Найти несмещенные оценки и математического ожидания и дисперсии для случайной величины Х – дневной выручки оптовой базы соответственно;
3. Определить приближенно вероятность того, что в наудачу выбранный рабочий день дневная выручка составит не менее 15 условных денежных единиц.
n1 n2 n3 n4 n5 n6 n7 n8
18 3 7 15 20 24 22 6
»
Выдержка из похожей работы
ABA B
C CΩ
Ω
A + B – C A + B C
A BCΩ( A − B )C
Задача 2, В урне находятся 4 шара, пронумеро-
ванные числами от 1 до 4, Случайным образом, без
A B
возвращения, из урны вынимают два шара, Найти
вероятность того, что:
а) номера вынутых шаров будут следовать друг
за другом (в любом порядке);
б) номера обоих шаров окажутся чётными, C
Ω
Решение, Элементарными исходами рассмат-
риваемого эксперимента являются возможные вари- ( B +C )
Aанты последовательного вынимания двух шаров из урны:Ω = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)},В данном случае пространство элементарных исходов состоит из 12 элементов: n = 12,Поскольку шары вынимаются случайным образом, все элементарные ис51
ходы равновозможны, и для вычисления вероятностей интересующих нас событий можно воспользоваться классическим методом определения вероятностей,Выпишем исходы, благоприятные событию A – {номера вынутых шаров будут следовать друг за другом (в любом порядке)}:A = {(1, 2), (2, 3), (3, 4), (4, 3) , (3, 2), (2, 1)},Число исходов, благоприятных событию A, равно 6:m = 6,Отсюда: P ( A )= mn = 126 = 12 ,Событию B – {номера обоих вынутых шаров окажутся чётными} благоприятны 2 исхода:A = {(2, 4), (4, 2)},Следовательно, P (B )= mn = 122 = 16 ,Ответ: а) вероятность того, что номера двух вынутых шаров будут следовать друг за другом (в любом порядке), равна 1/2; б) вероятность того, что номера обоих вынутых шаров окажутся чётными, равна 1/6,Задача 3, На наблюдательной станции установлены три локатора различных типов, Вероятности обнаружения движущегося объекта при одном цикле обзора для каждого из локаторов известны и равны соответственно 0,75; 0,8 и 0,85, Найти вероятность того, что при одном цикле обзора всех трёх локаторов движущийся объект будет обнаружен: а) только одним локатором; б) не менее чем двумя локаторами,Решение, Обозначим события:Ai = {объект обнаруженi-млокатором},i = 1, 2, 3;B = {объект обнаружен только одним локатором};C = {объект обнаружен не менее чем двумя локаторами}