Учебная работа № 6400. «Диплом Изучение трансцендентных функций (на примере тригонометрических функций)
Учебная работа № 6400. «Диплом Изучение трансцендентных функций (на примере тригонометрических функций)
Содержание:
«Введение 3
Глава 1. Теоретические основы изучения тригонометрических функций в средней школе 5
1.1. Трансцендентные функции, их основные виды 5
1.2. Тригонометрия как наука 12
1.3. Основные тригонометрические функции 19
Глава 2. Методика изучение тригонометрических функций в средней школе 27
2.1. Основные вопросы изучения тригонометрических функций в школе 27
2.2. Анализ различных школьных учебников с точки зрения изложения темы «Тригонометрические функции 30
2.3. Вопросы методики преподавания темы «Тригонометрические функции» в школе 41
Заключение 66
Библиография……………………………………………………………………………………………68
Приложение
»
Выдержка из похожей работы
Простейшие ^»«образования, опирающиеся
на свойства арифметических операций,
произ-
1Ч-,Я уже
в начальной школе, Но основную нагрузку
по формированию умений и навыков
выполнения преобразований несет на
себе курс школьной алгебры 1
>то связано:
с
резким увеличением числа совершаемых
преобразований, их разно- оПришсм;
с
усложнением деятельности по их
обоснованию и выяснению условий
применимости;
i
) с выделением и изучением обобщенных
понятий тождества, тождественного
преобразования, равносильного
преобразования, логического следования,
Линия
тождественных преобразований получает
следующее развитие в курсе алгебры
основной школы:
,4
б классы
— раскрытие скобок, приведение подобных
слагаемых, выне- М(Чшо множителя за
скобки;
7
класс
— тождественные преобразования целых
и дробных выражений;
Н
класс —
тождественные преобразования выражений,
содержащих квад- с корни;
(>
класс —
тождественные преобразования
тригонометрических выражений и ммрижсний,
содержащих степень с рациональным
показателем,
11собходимо
заметить, что у разных авторов учебников
эта последова- К’Щ,иость имеет свои
особенности,
Линия
тождественных преобразований является
одной из важных идейны ч линий курса
алгебры, Поэтому обучение математике
в 5-6 классах строится niKiiM
образом,
чтобы учащиеся уже в этих классах
приобрели навыки простейших
тождественных преобразований (без
употребления термина «тождест- неиные
преобразования»), Эти навыки формируются
при выполнении упражнении на приведение
подобных слагаемых, раскрытие скобок
и заключение в скобки, вынесение множителя
за скобки и т,д, Рассматриваются также
простейшие преобразования числовых
и буквенных выражений, На этом уровне
обучения осваиваются преобразования,
которые выполняются непосредственно
на основе законов и свойств арифметических
действий,
К
основным видам задач в 5-6-х классах, при
решении которых активно используются
свойства и законы арифметических
действий и через которые формируются
навыки тождественных преобразований,
относятся:
обоснование
алгоритмов выполнения действий над
числами изучаемых числовых множеств;
вычисление
значений числового выражения наиболее
рациональным способом;
сравнение
значений числовых выражений без
выполнения указанных действий;
упрощение
буквенных выражений;
доказательство
равенства значений двух буквенных
выражений и т,д,
Примеры,
Представьте
число 153 в виде суммы разрядных слагаемых;
в виде разности двух чисел, в виде
произведения двух чисел,
Представьте
число 27 в виде произведений трех
одинаковых множителей,
Эти
упражнения на представление одного и
того же числа в разных формах записи
содействуют усвоению понятия о
тождественных преобразованиях, Вначале
эти представления могут быть произвольными,
в дальнейшем — целенаправленными,
Например, представление в виде суммы
разрядных слагаемых используется для
объяснения правил сложения натуральных
чисел «столбиком», представление в
виде суммы или разности «удобных» чисел
— для выполнения быстрых вычислений
различных произведений, представление
в виде произведения множителей — для
упрощения различных дробных выражений