Учебная работа № 6034. «Контрольная Эконометрика, вариант 7 и 5
Учебная работа № 6034. «Контрольная Эконометрика, вариант 7 и 5
Содержание:
«Грязнова Т.Б. Вариант 7 Ложная регрессия
Задание
1. Построить модель парной линейной регрессии, определить расчетные значения параметров регрессионной модели.
2. Провести проверку наличия и тесноты связи.
3. Провести проверку значимости уравнения и его параметров.
4. Сформулировать выводы. Оформить и защитить отчет по лабораторной работе.
Вариант 5
Таблица 1 – Исходные данные
№ Возраст работника, лет (х) Заработная плата, усл.ед. (у)
1 28 250
2 33 350
3 25 200
4 48 400
5 30 220
6 37 380
7 42 390
8 41 360
9 31 260
10 27 250
»
Выдержка из похожей работы
Вариант 5
Тип
школы
Хорошее
освоение курса (тыс,чел)
Среднее
освоение курса (тыс,чел)
Проблемы
с освоением курса (тыс,чел)
А
85,0
11,2
3,8
В
79,3
10,7
9,4
С
61,5
17,6
20,3
Преобразуем таблицу:
Тип
школы
Хорошее
освоение курса (тыс,чел)
Среднее
освоение курса (тыс,чел)
Проблемы
с освоением курса (тыс,чел)
Итого
А
85,0
11,2
3,8
100
В
79,3
10,7
9,4
99,4
С
61,5
17,6
20,3
99,4
Итого
225,8
39,5
33,5
298,8
Оценим
-коэффициент:
,,
,
,
18,83
связь слабая положительная,
———————————————————————————————————————
Оценим С-коэффициент сопряженности:
связь слабая
———————————————————————————————————————
Оценим V-коэффициент
Крамера:
=
=
0,18значимой связи нет
———————————————————————————————————————
Оценим коэффициент взаимной сопряженности
Чупрова:
,
φ2– это показатель взаимной
сопряженности, определяемый следующим
образом:
1+φ²=
85²/(225,8*100)+11,2²/(39,5*100)+3,8²/(33,5*100)+79,3²/(225,8*99,4)+10,7²/(39,5*99,4)+9,4²/((33,5*99,4)+61,5²/(225,8*99,4)+17,6²/(39,5*99,4)+20,3²/(33,5*99,4)=0,32+0,03+0,004+0,28+0,029+0,03+0,17+0,08+0,12=1,063
φ²=1,063-1=0,063
значимой связи нет,
Коэффициент ранговой корреляции
Спирмена:
Коэффициент корреляции Спирмена — это
аналог коэффициента корреляции Пирсона,
но подсчитанный для ранговых переменных,
вычисляется он по следующей формуле:
,
гдеd– разность рангов,
Высчитывается только для таблицы
размером 2*2,
———————————————————————————————————————
Коэффициент Юла
Коэффициент Юла подходит, если
рассматривается таблица 2*2, Т,е,
определяется сила связи между 2-мя
параметрами, каждый из которых принимает
только 2 значения,
На основании полученных коэффициентов
можно сделать вывод, что связь между
параметрами очень слабая положительная,
т,е, освоение курса практически не
зависит от типа школы,