Учебная работа № 5814. «Контрольная Алгебра, 5 вариант
Учебная работа № 5814. «Контрольная Алгебра, 5 вариант
Содержание:
«Контрольная работа №1
Вариант № 5
Задание 1.
1.5. Решить систему линейных уравнений методом Крамера и матричным методом. Сделать проверку.
Задание 2. Решить систему линейных уравнений , заданной расширенной матрицей, методом последовательного исключения неизвестных. В случае неопределенности системы найти ее общее, базисное и любое частное решения. Сделать проверку.
Задание 3. По трем заданным точкам построить треугольник и средствами векторной алгебры найти: 1) длину стороны ; 2) уравнение линии ; 3) уравнение высоты, проведенной из точки ; 4) длину высоты, проведенной из точки ; 5) площадь треугольника ; 6) угол между сторонами и ; 7) координаты точки – середины стороны ; 8) координаты точки М, делящей сторону в отношении 2:3, считая от точки А.
3.5. , , .
Задание 4. По четырем заданным точкам построить пирамиду и средствами векторной алгебры найти: 1) длину ребра ; 2) угол между ребрами и ; 3) площадь грани ; 4) объем пирамиды ; 5) составить уравнение прямой ; 6) уравнение плоскости .
4.5. , , , .
Задание 5. Даны уравнения линии в полярной системе координат. Требуется: 1) построить линию по точкам на промежутке от до с шагом, равным ; 2) найти уравнение линии в прямоугольной декартовой системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью; 3) назвать линию, найти координаты центра и полуоси.
Контрольная работа №2
Вариант № 5
а) Записать их в тригонометрической форме и отметить полученные числа на комплексной плоскости; б) Найти числа , , построить; в) Найти , , записать в тригонометрической и алгебраической формах, сравнить результаты; г) Найти ; д) Найти , построить.
6.5. , .
Задание 7. Найти пределы функций.
Задание 8. Задана функция . Установить, является ли данная функция непрерывной. В случае разрыва функции в некоторой точке найти ее пределы слева и справа, классифицировать характер разрыва. Построить схематично график функции.
9. Дано уравнение . Требуется: 1) графическим методом определить корень этого уравнения; 2) найти этот корень с точностью до 0,1 методом деления отрезка пополам.»
Выдержка из похожей работы
Найдём ранг основной
матрицы системы с помощью элементарных
преобразований:
~
~
Таким образом,
= 2
Так как ранг системы
меньше числа неизвестных, то система
имеет ненулевые решения, Размерность
пространства решений этой системы: n
– r
= 4 – 2 = 2
Преобразованная
система имеет вид:
<=>
<=>
<=>
Эти формулы дают
общее решение, В векторном виде его
можно записать следующим образом:
=
=
=
*
+
где
,
− произвольные числа
Вектор−столбцы:
=
и
=
образуют базис
пространства решений данной системы,
Задание 74,
Даны два линейных
преобразования, Средствами матричного
исчисления найти преобразование,
выражающее x1′′,
x2′′,
x3′′
через x1,
x2,
x3
Решение
Первое линейное
преобразование:
= A
*
имеет матрицу А =
Второе:
= B
*
имеет матрицу В =
(*)
Тогда если в (*)
вместо В и
поставить соответствующие матрицы,
получим:
C
= B
* A
, то есть
C
=
*
=
Поэтому искомое
линейное преобразование имеет вид:
=
*
Задание 84,
Найти собственные
значения и собственные векторы линейного
преобразования, заданного в некотором
базисе матрицей,
Составляем
характеристическое уравнение матрицы:
=
= 0
(5−λ)
*
+ 7 *
+ 0 *
= 0
(5−λ)
(1−λ)
(−3−λ)
+ 7 (−3) (−3−λ)
= 0 (**)
(5−6λ+)
(−3−λ)
+ 63 + 21λ
= 0
−15 +18λ
− 3
− 5λ
+ 6
−
+ 63 + 21λ
= 0
48 + 34λ
+ 3
−
= 0 <=> (**) (λ
– 8) (λ
+ 2) (λ
+ 3) = 0
то есть
= 8 ,
= −3 ,
= −2
При
= 8 система имеет вид:
=>
Выразим
через :
4 * (−7)
+ 6
= 11
−22
= 11
=>
= −0,5
Выразим
через :
12
+ 6*()
= 11
84
− 18
= 77
66
= 77
=>
= 1
Таким образом,
числу
= 8 соответствует собственный вектор:
=
=
=
где
− произвольное действительное число
Аналогично для
= −3
<=>
=
= 0
Таким образом,
числу
= −3 соответствует собственный вектор
=
=
=
Наконец для
= −2 решаем систему:
=>
то есть вектор
=
=
=
Итак, матрица А
имеет три собственных значения:
= 8 ,
= −3 ,
= −2, Соответствующие им собственные
векторы (с точностью до постоянного
множителя) равны:
=
=
=
Задача 94,
Привести к
каноническому виду уравнение линии
второго порядка, используя теорию
квадратичных форм,
Левая часть
уравнения
представляет собой квадратичную форму
с матрицей:
А =
Решаем
характеристическое уравнение:
= 0 , то есть
= 0
<=> (5−λ)
(3−λ)
= 8
− 8λ
+ 7 = 0
= 1 ,
= 7
Найдём собственные
векторы из системы уравнений
при
= 1 ,
= 7
Если
= 1 , то:
=>
=
Значит собственный
вектор
=
для
= 1
Если
= 7 , то:
=>
=
значит собственный
вектор
=
для
= 7
Нормируем собственные
векторы, по правилу:
=
, получаем:
=
=
Составляем матрицу
перехода от старого базиса к новому:
T
=
Выполняя
преобразования:
= T
=
*
=
=>
x
=
+
, y
= +
Подставим полученные
x
и y
в исходное уравнение и полученное
уравнение упростим:
5
+
+ 3
= 14
+
+ 22
+
= 14
+ 10
+ 10
− 8
− 4
+ 8
+ 6
− 6
+ 3
= 42
+ 21
= 42 =>
+
= 1 – каноническое уравнение эллипса