Учебная работа № 4938. «Контрольная Теория игр, 2 задачи

Учебная работа № 4938. «Контрольная Теория игр, 2 задачи

Количество страниц учебной работы: 8
Содержание:
N=12, M=7
ЗАДАНИЕ 1
Сельскохозяйственное предприятие планирует посеять на площади 2000 га одну или две (в равной пропорции) из трех культур – , , . Урожайности этих культур при прочих равных условиях зависят главным образом от погоды. Состояния погоды можно охарактеризовать четырьмя вариантами: – сухо, – нормально, – умеренно влажно, – влажно. Урожайности культур в зависимости от состояний погоды приведены в табл. 1, где конкретные числовые данные определяются по формулам:
;
;
;
где n – номер по списку в группе, m – порядковый номер группы, m = 1, 2, 3.
а) по статистическим данным известно, что состояния погоды и равновозможны, причем каждое из них наступает в (1+0,4?n)=5,8 раз реже, чем состояние , и в (2+0,1?n)=3,2 раза реже, чем состояние ;
б) используется критерий Вальда;
в) используется критерий минимаксного риска;
г) используется критерий Гурвица, причем уровень пессимизма (доверия) в (1+0,1?n)=2,2 раза выше уровня оптимизма.
ЗАДАНИЕ 2
Два предприятия А и В регулярно поставляют на местный рынок сбыта продукцию двух видов, причем каждое предприятие для очередной поставки может выбрать только один вид продукции. Свой выбор предприятия осуществляют независимо друг от друга. Предприятие А может поставить N1 единиц продукции 1-го вида или N2 единиц продукции 2-го вида, а предприятие В – М1 или М2 единиц продукции соответственно. Цены на продукцию (в условных денежных единицах) определяются в зависимости от количества поставленной на рынок продукции и описываются следующими функциями:
f1(X1) = c1 – k1X1 для продукции 1-го вида,
f2(X2) = c2 – k2X2 для продукции 2-го вида,
где X1, X2 – количество поставленной на рынок продукции 1-го или 2-го вида соответственно.

Стоимость данной учебной работы: 585 руб.Учебная работа № 4938.  "Контрольная Теория игр, 2 задачи

Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

Укажите № работы и вариант


Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


Введите символы с изображения:

captcha

Выдержка из похожей работы

Эффективность каждого типа
зависит от различных факторов: режима
рек, стоимости топлива и его перевозки
и т,п, Предположим, что выделено четыре
различных состояния, каждое из которых
означает определенное сочетание
факторов, влияющих на эффективность
энергетических объектов, Состояние
природы обозначим,
,,,
Экономическая эффективность строительства
отдельных типов электростанций изменяется
в зависимости от состояния природы и
задана матрицей,

A =

Задачи,
которые необходимо выполнить:
Дать
рекомендации ЛПР согласно критериям:
критерий
Лапласа;максиминный
критерий Вальда;критерий
Гурвица ();критерий
Сэвиджа);

Решение:
Критерий
Лапласа:
В
некоторых задачах, приводящихся к
игровым, имеется неопределенность,
вызванная отсутствием информации об
условиях, в которых осуществляется
действие (погода, покупательский спрос
и т,д,), Эти условия зависят не от
сознательных действий игроков, а от
объективной действительности, Такие
игры называются играми с «природой»,
Человек в играх с природой старается
действовать осмотрительно, второй игрок
(природа, покупательский спрос) действует
случайно,
Критерий
Лапласа
основан на гипотезе равные вероятности
и здесь предполагают, что все состояния
природы равновероятны:
,
При
принятии данной гипотезы в качестве
оценки стратегии надо брать
соответствующий её средний выигрыш,
то есть:
Fi
=
Выбирается
та альтернатива, для которой функция
полезности максимальна,
F1
=(1 + 4 +3 +2)/4 = 2,5;
F2
= (1 + 1 + 1 + 4)/4 = 1,75;
F3
= (4 + 4 + 1 + 2)/4 = 2,75;
F4
= (2 + 2 + 2 +4)/4 = 2,5;
Видно,
что функция полезности максимальна для
альтернативы А3,
следовательно выбираем стратегию A3,
т,е, строительство бесшлюзовых
электростанций,
Максиминный
критерий Вальда:
Данный
критерий основывается на принципе
максимального пессимизма, то есть на
предположении, что скорее всего произойдет
наиболее худший вариант развития
ситуации и риск наихудшего варианта
нужно свести к минимуму, Для применения
критерия нужно для каждой альтернативы
выбрать наихудший показатель
привлекательности α1
(наименьшее число в каждой строке матрицы
выигрышей) и выбрать ту альтернативу,
для которой этот показатель максимальный,
Оптимальная
по данному критерию стратегия
находится из условия,
то есть,
α1
= 1; α2
= 1; α3
= 1; α4
= 2;
Видно,
что наилучшим из наихудших показателей
обладает альтернатива А4
, для нее наибольшее α4
= 2

Добавить комментарий

Ваш e-mail не будет опубликован.