Учебная работа № 4822. «Контрольная Высшая математика, вариант 1

Учебная работа № 4822. «Контрольная Высшая математика, вариант 1

Количество страниц учебной работы: 5
Содержание:
Задания для контрольных работ
Вариант – 1
1. Найти фундаментальную систему решений систем линейных уравнений
2. Линейный оператор А действует в по закону . Найти матрицу А этого оператора в каноническом базисе. Доказать, что вектор является собственным для матрицы А. Найти собственное число , соответствующее вектору х. Найти другие собственные числа, отличные от . Найти все собственные векторы матрицы А и сделать проверку.
3. Швейная фабрика в течение трех дней производила костю¬мы, плащи и куртки. Известны объемы выпуска продукции за три дня и денежные затраты на производство за эти дни:
День Объем выпуска продукции (единиц) Затраты
(тыс. усл.ед.)
Костюмы Плащи Куртки
Первый
Второй
Третий 50
35
40 10
25
20 30
20
30 176
168
184
Найти себестоимость единицы продукции каждого вида.
4. Выяснить, продуктивна ли матрица А:
5. Три завода выпускают четыре вида продукции. Необходимо: а) найти матрицу выпуска продукции за квартал, если заданы матрицы помесячных выпусков и ;
б) найти матрицы приростов выпуска продукции за каждый месяц В1 и В2 и проанализировать результаты:
.

Стоимость данной учебной работы: 585 руб.Учебная работа № 4822.  "Контрольная Высшая математика, вариант 1

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


    Выдержка из похожей работы

    7182

    2) найдите
    расстояние между точками
    ина комплексной плоскости,

    Расстояние
    между точками Z1
    и Z3
    есть модуль
    их разности

    Задание
    3
    Решите систему
    уравнений тремя способами:
    1) методом Крамера;
    2) методом обратной
    матрицы;
    3) методом Гаусса,

    Решение
    задания 3,

    Метод
    Крамера

    Запишем систему
    в виде:
    BT
    = (-6,6,-4)
    Найдем главный
    определитель:
    ∆ = 2 х (-1 х 1-(-1 х
    (-2)))-3 х (-2 х 1-(-1 х 1))+1 х (-2 х (-2)-(-1 х 1)) = 2 = 2
    Заменим 1-ый столбец
    матрицы А на вектор результата В,

    Найдем определитель
    полученной матрицы,
    ∆1
    = -6 х (-1 х 1-(-1 х (-2)))-6 х (-2 х 1-(-1 х 1))+(-4 х (-2 х
    (-2)-(-1 х 1))) = 4

    Заменим 2-ый столбец
    матрицы А на вектор результата В,

    Найдем определитель
    полученной матрицы,
    ∆2
    = 2 х (6 х 1-(-4 х (-2)))-3 х (-6 х 1-(-4 х 1))+1 х (-6 х
    (-2)-6 х 1) = 8

    Заменим 3-ый столбец
    матрицы А на вектор результата В,

    Найдем определитель
    полученной матрицы,
    ∆3
    = 2 х (-1 х (-4)-(-1 х 6))-3 х (-2 х (-4)-(-1 х (-6)))+1 х (-2
    х 6-(-1 х (-6))) = -4

    Ответ: найденные
    переменные:
    ; ; ,

    2,
    Методом обратной матрицы;

    Обозначим
    через А — матрицу коэффициентов при
    неизвестных; X — матрицу-столбец
    неизвестных; B — матрицу-столбец свободных
    членов:

    Вектор
    B:
    BT=(-6,6,-4)С
    учетом этих обозначений данная система
    уравнений принимает следующую матричную
    форму: А*Х = B,Найдем
    главный определитель,
    ∆=2•(-1•1-(-1•(-2)))-3•(-2•1-(-1•1))+1•(-2•(-2)-(-1•1))=2
    ≠ 0Транспонированная
    матрица

    Вычислим
    алгебраические дополнения,
    ∆1,1=(-1•1-(-2•(-1)))=-3
    ∆1,2=-(-2•1-1•(-1))=1
    ∆1,3=(-2•(-2)-1•(-1))=5
    ∆2,1=-(3•1-(-2•1))=-5
    ∆2,2=(2•1-1•1)=1
    ∆2,3=-(2•(-2)-1•3)=7
    ∆3,1=(3•(-1)-(-1•1))=-2
    ∆3,2=-(2•(-1)-(-2•1))=0
    ∆3,3=(2•(-1)-(-2•3))=4

    Обратная
    матрица

    Вектор
    результатов X
    X=A-1
    • B

    XT=(2,4,-2)

    x1=4
    / 2=2
    x2=8
    / 2=4
    x3=-4
    / 2=-2

    Ответ:
    найденные
    переменные: x1=4
    / 2=2;
    x2=8
    / 2=4;
    x3=-4
    / 2=-2

    3) методом Гаусса,Запишем
    систему в виде расширенной матрицы:

    Умножим
    1-ую строку на (3), Умножим 2-ую строку на
    (-2), Добавим 2-ую строку к 1-ой:

    Умножим
    3-ую строку на (-3), Добавим 3-ую строку к
    2-ой:

    Умножим
    2-ую строку на (2), Добавим 2-ую строку к
    1-ой:

    Теперь
    исходную систему можно записать как:
    x3
    = 6/(-3)
    x2
    = [18 — ( — 5×3)]/2
    x1
    = [-4 — ( — x2
    + x3)]/1Из
    1-ой строки выражаем x3

    Из
    2-ой строки выражаем x2

    Из
    3-ой строки выражаем x1

    Ответ:
    найденные
    переменные: x1=2;
    x2=4;
    x3=-2

    Задание
    4
    Даны три вектора
    иДокажите, что векторыобразуют базис, и определите, какая это
    тройка векторов: правая или левая