Учебная работа № 4697. «Контрольная Теория вероятности 4

Учебная работа № 4697. «Контрольная Теория вероятности 4

Количество страниц учебной работы: 2
Содержание:
Решите задачи:
1) В конверте среди 100 фотокарточек находится одна разыскиваемая. Из конверта наудачу извлечены 10 карточек. Найти вероятность того, что среди них окажется нужная.

2) Считая вероятность безотказной работы станка в течение смены равной 0,9, найти вероятность безотказной работы двух станков в течении смены.
3) Среди 25 электрических лампочек четыре нестандартные. Найти вероятность того, что две взятые одновременно лампочки окажутся нестандартными.

4) В урне имеется 5 шаров с номерами от 1 до 5. Наудачу по одному извлекают три шара без возвращения. Найти вероятности следующих событий:
а) последовательно появятся шары с номерами 1, 4, 5;
б) извлечённые шары будут иметь номера 1, 4, 5 независимо от того, в какой последовательности они появятся.

5) Вероятность выигрыша по одному билету лотереи равна 1/7. Какова вероятность того, что лицо, имеющее шесть билетов:
а) выиграет по двум билетам;
б) выиграет по трём билетам;

в) не выиграет по двум билетам?
6) На сборку поступило 3000 деталей с первого станка и 2000 со второго. Первый станок даёт 0,2%, а второй 0,3% брака. Найти вероятность того, что взятая наудачу деталь из не рассортированной продукции станков окажется бракованной.
7) Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы четыре студента, из второй – шесть, из третьей – пять студентов. Вероятности того, что отобранный студент из первой, второй, третьей группы попадёт в сборную института, равны соответственно 0,5 0,4 и 0,3. Наудачу выбранный участник соревнований попал в сборную. К какой из этих трёх групп он вероятнее всего принадлежит?
8) Найти экстремум функции z = x2 + 3xy + y2 при условии x + y = 6 методом Лагранжа

Стоимость данной учебной работы: 390 руб.Учебная работа № 4697.  "Контрольная Теория вероятности 4

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.


    Выдержка из похожей работы

    Таким образом, общее число
    элементарных исходов равно n = 6 * 6 = 36,
    Событию А
    благоприятствуют пары (5;6), (6;6), (6;5), число
    которых равно m = 3,
    Следовательно,
    Р(А) = m/n = 3/36 = 0,83+

    Задача 2(39)
    Приведена схема
    соединения элементов, образующих цепь
    с одним входом и одним выходом,
    Предполагается, что отказы элементов
    являются независимыми в совокупности
    событиями, Отказ любого из элементов
    приводит к прерыванию сигнала в той
    ветви цепи, где находится данный элемент,
    Вероятности отказа элементов 1, 2, 3, 4, 5,
    6 соответственно равны q1=0,1;
    q2=0,2;
    q3=0,3;
    q4=0,4;
    q5=0,5
    q6=0,6
    , Найти вероятность того, что сигнал
    пройдет со входа на выход,

    1 2
    3

    Решение,
    Аi
    – работает
    i-ый
    элемент;
    — не работает i-ый
    элемент

    =
    =(0,9*0,7+0,8*0,6-0,9*0,8*0,7*0,6)*(0,5+0,4-0,5*0,4)=0,5653+

    Задача 3(27)
    Имеются три
    одинаковых по виду ящика, В первом ящике
    20 белых шаров, во втором — 10 белых и 10
    черных шаров, в третьем — 20 черных шаров,
    Из каждого ящика вынули шар, Затем из
    этих трех шаров наугад взяли один шар,
    Вычислить вероятность того, что шар
    белый,

    Решение,
    А = {вынутый шар —
    белый};
    Вi
    = {шар вынули из i-го
    ящика};
    p(B1)=20/60=1/3;
    p(B2)=1/3;
    p(B3)=1/3
    ,
    p(A/B1)=1;
    p(A/B2)=1/2;
    p(B3)=0
    ,
    По формуле полной
    вероятности
    p(A)=p(B1)*p(A/B1)+p(B2)*p(A/B2)+p(B3)*p(A/B3)=
    =1/3 * 1 +
    1/3 * 1/2 + 1/3 * 0 =0,5

    Задача 4(21)
    Монету подбрасывают
    восемь раз, Какова вероятность того,
    что она четыре раза упадет гербом вверх?

    Решение,
    Вероятность
    выпадения монеты гербом вверх p=1/2