Учебная работа № 4422. «Контрольная Математика часть 2 (вариант 4)
Учебная работа № 4422. «Контрольная Математика часть 2 (вариант 4)
Содержание:
Задача 1
Из перетасованной колоды (36 карт) последовательно извлекаются 3 карты. Какова вероятность события, что эти 3 карты – два туза и одна дама?
Задача 2
В телеграфном сообщении точки составляют 60% символов, тире – 40%. Вероятность в процессе передачи быть искажённым для тире равна 0,1, для точки – 0,2. Найти вероятность того, что передавалась точка, и вероятность того, что передавалось тире, если принята точка.
Задача 3
Из изучаемой налоговыми органами обширной группы населения было случайным образом отобрано 10 человек и собраны сведения об их доходах за истекший год в тыс. рублей: x1, x2,…, xn. Найти выборочное среднее, выборочную дисперсию, исправленную выборочную дисперсию. Считая распределение доходов в группе нормальным и используя в качестве его параметров выборочное среднее и исправленную выборочную дисперсию, определить, какой процент группы имеет годовой доход, превышающий 85 тыс. рублей.
Задача 4
На коробках с конфетами было подготовлено 2 варианта рисунка. В течение 30 дней ежедневно регистрировалось число проданных коробок каждого вида, которое колебалось от 0 до 8. По заданной таблице при уровне значимости 0,05 ответить на вопрос, повлиял ли рисунок на объём продаж. (1-ая строка таблицы – число проданных коробок, 2-ая и 3-я строки – количество дней с данным объёмом продаж соответственно коробок первого и второго типа).
0 1 2 3 4 5 6 7 8
0 1 3 5 6 5 5 3 2
2 3 3 4 4 4 4 3 3
Задача 5
В таблице приведены средние мировые цены на сырую нефть X (дол. за баррель) и бензин Y (центов за галлон) с 1978 по 1982 год. На графике в координатах X, Y нанести 5 точек, относящихся к данным годам. По пяти точкам получить методом наименьших квадратов уравнение линейной регрессии Y=aX+b и представить его на графике.
Год Бензин, y Сырая нефть, X
1978 63 9,00
1979 86 12,64
1980 119 21,59
1981 133 31,77
1982 122 28,52
Задача 6
Экономика разделена на три отрасли: промышленность, сельское хозяйство, прочие отрасли. На плановый период заданы коэффициенты прямых затрат и конечная продукция отраслей
Производящие отрасли Потребляющие отрасли Конечная
продукция
I II III
I 0,3 0,1 0,2 140
II 0,3 0,1 0,0 80
III 0,3 0,3 0,4 100
По этим данным рассчитать плановые объемы валовой продукции и межотраслевые поставки, определив матрицу полных затрат итерационным методом, ограничившись четырьмя членами разложения.
Задача 7
Составить математические модели следующей задачи.
Кондитерский цех выпускает три вида конфет A, B, C, используя три вида сырья (какао, сахар, наполнитель). Нормы расхода сырья на производство 10 кг конфет, а также прибыль от реализации 10 кг конфет каждого вида приведены в таблице:
Сырье Нормы расхода сырья Запасы сырья
A B C
какао 15 18 12 360
сахар 4 6 8 192
наполнитель 3 5 3 180
прибыль 10 10 14
Составить план выпуска продукции, обеспечивающий максимум прибыли.
Задача 8
Решить задачу линейного программирования графическим методом
F(x)=2×1+2×2 max
x1+2×2<=14
-5x1+3x2<=15
2x1+3x2>=12
x1,x2>0
Задача 9
Найдите решения следующей матричной игры
5 7 10
10 9 6
Выдержка из похожей работы
Найдём ранг основной
матрицы системы с помощью элементарных
преобразований:
~
~
Таким образом,
= 2
Так как ранг системы
меньше числа неизвестных, то система
имеет ненулевые решения, Размерность
пространства решений этой системы: n
– r
= 4 – 2 = 2
Преобразованная
система имеет вид:
<=>
<=>
<=>
Эти формулы дают
общее решение, В векторном виде его
можно записать следующим образом:
=
=
=
*
+
где
,
− произвольные числа
Вектор−столбцы:
=
и
=
образуют базис
пространства решений данной системы,
Задание 74,
Даны два линейных
преобразования, Средствами матричного
исчисления найти преобразование,
выражающее x1′′,
x2′′,
x3′′
через x1,
x2,
x3
Решение
Первое линейное
преобразование:
= A
*
имеет матрицу А =
Второе:
= B
*
имеет матрицу В =
(*)
Тогда если в (*)
вместо В и
поставить соответствующие матрицы,
получим:
C
= B
* A
, то есть
C
=
*
=
Поэтому искомое
линейное преобразование имеет вид:
=
*
Задание 84,
Найти собственные
значения и собственные векторы линейного
преобразования, заданного в некотором
базисе матрицей,
Составляем
характеристическое уравнение матрицы:
=
= 0
(5−λ)
*
+ 7 *
+ 0 *
= 0
(5−λ)
(1−λ)
(−3−λ)
+ 7 (−3) (−3−λ)
= 0 (**)
(5−6λ+)
(−3−λ)
+ 63 + 21λ
= 0
−15 +18λ
− 3
− 5λ
+ 6
−
+ 63 + 21λ
= 0
48 + 34λ
+ 3
−
= 0 <=> (**) (λ
– 8) (λ
+ 2) (λ
+ 3) = 0
то есть
= 8 ,
= −3 ,
= −2
При
= 8 система имеет вид:
=>
Выразим
через :
4 * (−7)
+ 6
= 11
−22
= 11
=>
= −0,5
Выразим
через :
12
+ 6*()
= 11
84
− 18
= 77
66
= 77
=>
= 1
Таким образом,
числу
= 8 соответствует собственный вектор:
=
=
=
где
− произвольное действительное число
Аналогично для
= −3
<=>
=
= 0
Таким образом,
числу
= −3 соответствует собственный вектор
=
=
=
Наконец для
= −2 решаем систему:
=>
то есть вектор
=
=
=
Итак, матрица А
имеет три собственных значения:
= 8 ,
= −3 ,
= −2, Соответствующие им собственные
векторы (с точностью до постоянного
множителя) равны:
=
=
=
Задача 94,
Привести к
каноническому виду уравнение линии
второго порядка, используя теорию
квадратичных форм,
Левая часть
уравнения
представляет собой квадратичную форму
с матрицей:
А =
Решаем
характеристическое уравнение:
= 0 , то есть
= 0
<=> (5−λ)
(3−λ)
= 8
− 8λ
+ 7 = 0
= 1 ,
= 7
Найдём собственные
векторы из системы уравнений
при
= 1 ,
= 7
Если
= 1 , то:
=>
=
Значит собственный
вектор
=
для
= 1
Если
= 7 , то:
=>
=
значит собственный
вектор
=
для
= 7
Нормируем собственные
векторы, по правилу:
=
, получаем:
=
=
Составляем матрицу
перехода от старого базиса к новому:
T
=
Выполняя
преобразования:
= T
=
*
=
=>
x
=
+
, y
= +
Подставим полученные
x
и y
в исходное уравнение и полученное
уравнение упростим:
5
+
+ 3
= 14
+
+ 22
+
= 14
+ 10
+ 10
− 8
− 4
+ 8
+ 6
− 6
+ 3
= 42
+ 21
= 42 =>
+
= 1 – каноническое уравнение эллипса