Учебная работа № 4422. «Контрольная Математика часть 2 (вариант 4)

Учебная работа № 4422. «Контрольная Математика часть 2 (вариант 4)

Количество страниц учебной работы: 7
Содержание:
Задача 1
Из перетасованной колоды (36 карт) последовательно извлекаются 3 карты. Какова вероятность события, что эти 3 карты – два туза и одна дама?

Задача 2
В телеграфном сообщении точки составляют 60% символов, тире – 40%. Вероятность в процессе передачи быть искажённым для тире равна 0,1, для точки – 0,2. Найти вероятность того, что передавалась точка, и вероятность того, что передавалось тире, если принята точка.

Задача 3
Из изучаемой налоговыми органами обширной группы населения было случайным образом отобрано 10 человек и собраны сведения об их доходах за истекший год в тыс. рублей: x1, x2,…, xn. Найти выборочное среднее, выборочную дисперсию, исправленную выборочную дисперсию. Считая распределение доходов в группе нормальным и используя в качестве его параметров выборочное среднее и исправленную выборочную дисперсию, определить, какой процент группы имеет годовой доход, превышающий 85 тыс. рублей.

Задача 4
На коробках с конфетами было подготовлено 2 варианта рисунка. В течение 30 дней ежедневно регистрировалось число проданных коробок каждого вида, которое колебалось от 0 до 8. По заданной таблице при уровне значимости 0,05 ответить на вопрос, повлиял ли рисунок на объём продаж. (1-ая строка таблицы – число проданных коробок, 2-ая и 3-я строки – количество дней с данным объёмом продаж соответственно коробок первого и второго типа).
0 1 2 3 4 5 6 7 8
0 1 3 5 6 5 5 3 2
2 3 3 4 4 4 4 3 3

Задача 5
В таблице приведены средние мировые цены на сырую нефть X (дол. за баррель) и бензин Y (центов за галлон) с 1978 по 1982 год. На графике в координатах X, Y нанести 5 точек, относящихся к данным годам. По пяти точкам получить методом наименьших квадратов уравнение линейной регрессии Y=aX+b и представить его на графике.
Год Бензин, y Сырая нефть, X
1978 63 9,00
1979 86 12,64
1980 119 21,59
1981 133 31,77
1982 122 28,52

Задача 6
Экономика разделена на три отрасли: промышленность, сельское хозяйство, прочие отрасли. На плановый период заданы коэффициенты прямых затрат и конечная продукция отраслей
Производящие отрасли Потребляющие отрасли Конечная
продукция
I II III
I 0,3 0,1 0,2 140
II 0,3 0,1 0,0 80
III 0,3 0,3 0,4 100
По этим данным рассчитать плановые объемы валовой продукции и межотраслевые поставки, определив матрицу полных затрат итерационным методом, ограничившись четырьмя членами разложения.

Задача 7
Составить математические модели следующей задачи.
Кондитерский цех выпускает три вида конфет A, B, C, используя три вида сырья (какао, сахар, наполнитель). Нормы расхода сырья на производство 10 кг конфет, а также прибыль от реализации 10 кг конфет каждого вида приведены в таблице:
Сырье Нормы расхода сырья Запасы сырья
A B C
какао 15 18 12 360
сахар 4 6 8 192
наполнитель 3 5 3 180
прибыль 10 10 14
Составить план выпуска продукции, обеспечивающий максимум прибыли.

Задача 8
Решить задачу линейного программирования графическим методом
F(x)=2×1+2×2 max
x1+2×2<=14 -5x1+3x2<=15 2x1+3x2>=12
x1,x2>0

Задача 9
Найдите решения следующей матричной игры
5 7 10
10 9 6

Стоимость данной учебной работы: 690 руб.Учебная работа № 4422.  "Контрольная Математика часть 2 (вариант 4)

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    Найдём ранг основной
    матрицы системы с помощью элементарных
    преобразований:

    ~
    ~

    Таким образом,
    = 2
    Так как ранг системы
    меньше числа неизвестных, то система
    имеет ненулевые решения, Размерность
    пространства решений этой системы: n
    – r
    = 4 – 2 = 2
    Преобразованная
    система имеет вид:

    <=>
    <=>

    <=>

    Эти формулы дают
    общее решение, В векторном виде его
    можно записать следующим образом:

    =
    =
    =
    *
    +

    где
    ,
    − произвольные числа

    Вектор−столбцы:

    =
    и
    =
    образуют базис
    пространства решений данной системы,

    Задание 74,
    Даны два линейных
    преобразования, Средствами матричного
    исчисления найти преобразование,
    выражающее x1′′,
    x2′′,
    x3′′
    через x1,
    x2,
    x3

    Решение

    Первое линейное
    преобразование:

    = A
    *
    имеет матрицу А =

    Второе:

    = B
    *
    имеет матрицу В =
    (*)
    Тогда если в (*)
    вместо В и
    поставить соответствующие матрицы,
    получим:

    C
    = B
    * A
    , то есть

    C
    =
    *
    =

    Поэтому искомое
    линейное преобразование имеет вид:

    =
    *

    Задание 84,
    Найти собственные
    значения и собственные векторы линейного
    преобразования, заданного в некотором
    базисе матрицей,

    Составляем
    характеристическое уравнение матрицы:

    =
    = 0

    (5−λ)
    *
    + 7 *
    + 0 *
    = 0

    (5−λ)
    (1−λ)
    (−3−λ)
    + 7 (−3) (−3−λ)
    = 0 (**)
    (5−6λ+)
    (−3−λ)
    + 63 + 21λ
    = 0
    −15 +18λ
    − 3
    − 5λ
    + 6

    + 63 + 21λ
    = 0
    48 + 34λ
    + 3

    = 0 <=> (**) (λ
    – 8) (λ
    + 2) (λ
    + 3) = 0
    то есть
    = 8 ,
    = −3 ,
    = −2

    При
    = 8 система имеет вид:

    =>

    Выразим
    через :

    4 * (−7)
    + 6
    = 11
    −22
    = 11
    =>
    = −0,5

    Выразим
    через :

    12
    + 6*()
    = 11

    84
    − 18
    = 77
    66
    = 77
    =>
    = 1

    Таким образом,
    числу
    = 8 соответствует собственный вектор:

    =
    =
    =

    где
    − произвольное действительное число

    Аналогично для

    = −3

    <=>
    =
    = 0

    Таким образом,
    числу
    = −3 соответствует собственный вектор

    =
    =
    =

    Наконец для
    = −2 решаем систему:

    =>

    то есть вектор

    =
    =
    =

    Итак, матрица А
    имеет три собственных значения:
    = 8 ,
    = −3 ,
    = −2, Соответствующие им собственные
    векторы (с точностью до постоянного
    множителя) равны:

    =

    =

    =

    Задача 94,
    Привести к
    каноническому виду уравнение линии
    второго порядка, используя теорию
    квадратичных форм,

    Левая часть
    уравнения
    представляет собой квадратичную форму
    с матрицей:
    А =
    Решаем
    характеристическое уравнение:

    = 0 , то есть
    = 0
    <=> (5−λ)
    (3−λ)
    = 8

    − 8λ
    + 7 = 0

    = 1 ,
    = 7

    Найдём собственные
    векторы из системы уравнений

    при
    = 1 ,
    = 7

    Если
    = 1 , то:

    =>
    =

    Значит собственный
    вектор
    =
    для
    = 1

    Если
    = 7 , то:

    =>
    =

    значит собственный
    вектор
    =
    для
    = 7

    Нормируем собственные
    векторы, по правилу:

    =
    , получаем:

    =

    =

    Составляем матрицу
    перехода от старого базиса к новому:

    T
    =

    Выполняя
    преобразования:

    = T

    =
    *
    =
    =>
    x
    =
    +
    , y
    = +

    Подставим полученные
    x
    и y
    в исходное уравнение и полученное
    уравнение упростим:

    5
    +

    + 3
    = 14

    +
    + 22
    +
    = 14

    + 10
    + 10
    − 8
    − 4
    + 8
    + 6
    − 6
    + 3
    = 42

    + 21
    = 42 =>

    +
    = 1 – каноническое уравнение эллипса